Project Description

At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

Goal for this Hackweek

  • Evaluate data gathering and cleanup. Create sensible embeddings to be used by LLMs.
  • Explore performance of Open-source llama based models (LLama, Vicuna, Mistral) in generating coherent and reasonably fast responses.
  • Look into creating evaluation data for later use
  • [Optional][requires beefy GPUs] Train Low Rank Adaptations (LoRA) and compare results.

Resources

Looking for hackers with the skills:

ai llm console gpu ml scc

This project is part of:

Hack Week 23 Hack Week 24

Activity

  • 3 days ago: ngetahun added keyword "scc" to this project.
  • about 1 year ago: ngetahun liked this project.
  • about 1 year ago: ngetahun started this project.
  • about 1 year ago: ngetahun added keyword "ai" to this project.
  • about 1 year ago: ngetahun added keyword "llm" to this project.
  • about 1 year ago: ngetahun added keyword "console" to this project.
  • about 1 year ago: ngetahun added keyword "gpu" to this project.
  • about 1 year ago: ngetahun added keyword "ml" to this project.
  • about 1 year ago: ngetahun originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo

    Description

    Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.

    Goals

    Develop an Elixir application via the Phoenix framework that:

    • Employs Retrieval Augmented Generation (RAG) techniques
    • Supports the integration and utilization of various Large Language Models (LLMs).
    • Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.

    Resources

    • https://elixir-lang.org/
    • https://www.phoenixframework.org/
    • https://github.com/elixir-nx/bumblebee
    • https://ollama.com/


    ghostwrAIter - a local AI assisted tool for helping with support cases by paolodepa

    Description

    This project is meant to fight the loneliness of the support team members, providing them an AI assistant (hopefully) capable of scraping supportconfigs in a RAG fashion, trying to answer specific questions.

    Goals

    • Setup an Ollama backend, spinning one (or more??) code-focused LLMs selected by license, performance and quality of the results between:
    • Setup a Web UI for it, choosing an easily extensible and customizable option between:
    • Extend the solution in order to be able to:
      • Add ZIU/Concord shared folders to its RAG context
      • Add BZ cases, splitted in comments to its RAG context
        • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query BZ
      • Add specific packages picking them from IBS repos
        • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query IBS
        • A plus would be to desume the packages of interest and the right channel and version to be picked from the added BZ cases


    Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez

    Description

    Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.

    Goals

    • Explore Ollama
    • Test different models
    • Fine tuning
    • Explore possible integration in Uyuni

    Resources

    • https://ollama.com/
    • https://huggingface.co/
    • https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    AI + Board Games

    Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.

    As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.

    Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!


    Project Goals

    1. Set Up the Stack:

      • Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
      • Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
      • Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
      • Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
    2. Design and Implement AI Agents:

      • Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
      • Fine-tune model parameters to optimize game-playing performance.
      • Document the advantages and limitations of each technique.
    3. Test, Analyze, and Refine:

      • Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
      • Record insights, document learning outcomes, and refine models based on real-world gameplay.

    Technical Stack

    • Frameworks: TAG and PyTAG for AI agent development
    • Platform: SUSE AI
    • Tools: AWS for high-performance GPU acceleration

    Why This Project Matters

    This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.


    Our Motivation

    We believe hands-on experimentation is the best teacher.

    Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!


    Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez

    Description

    Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.

    Goals

    • Explore Ollama
    • Test different models
    • Fine tuning
    • Explore possible integration in Uyuni

    Resources

    • https://ollama.com/
    • https://huggingface.co/
    • https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/


    New migration tool for Leap by lkocman

    Update

    I will call a meeting with other interested people at 11:00 CET https://meet.opensuse.org/migrationtool

    Description

    SLES 16 plans to have no yast tool in it. Leap 16 might keep some bits, however, we need a new tool for Leap to SLES migration, as this was previously handled by a yast2-migration-sle

    Goals

    A tool able to migrate Leap 16 to SLES 16, I would like to cover also other scenarios within openSUSE, as in many cases users would have to edit repository files manually.

    • Leap -> SLES docs
    • Leap 15 -> Leap 16 (or generally within Leap releases)
    • Leap -> Tumbleweed
    • Leap -> Slowroll

    Out of scope is any migration to an immutable system. I know Richard already has some tool for that.

    Resources

    code-o-o/leap/features#173 YaST stack reduction

    Repository

    github