Description

The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

Goals

  • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
  • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
  • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
  • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

 Hackweek STEP

  • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

 Scope

  • Implement read-only MCP server that can:
    • Connect to a live SUSE Observability instance and authenticate (with API token)
    • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
    • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
    • Return the data as a structured JSON payload compliant with the MCP specification.

Deliverables

  • MCP Server v0.1 A running Golang MCP server with at least one tool.
  • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

Resources

  • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
  • https://www.datadoghq.com/blog/datadog-remote-mcp-server
  • https://modelcontextprotocol.io/specification/2025-06-18/index
  • https://modelcontextprotocol.io/docs/develop/build-server

 Basic implementation

  • https://github.com/drutigliano19/suse-observability-mcp-server

Results

Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

Example execution

Prompt: The application in sock-shop namespace is very slow and seems to have a problem

Answer:

Based on the investigation, I have concluded the following:

  • catalogue Service is the Root Cause: The catalogue service is in a CRITICAL state, experiencing a severe performance degradation that started around 17:15:00. This is evidenced by a sharp increase in both response times (exceeding 3.5 seconds) and 5xx error rates (peaking over 9%).

  • front-end Service is a Victim: The front-end service is in a DEVIATING state solely due to an increase in 5xx errors it is receiving. Its own performance monitors are clear, indicating that it is being affected by a downstream dependency.

  • Inferred Dependency: Although I was unable to confirm the direct dependency via the topology query, the correlated timing and the nature of the errors strongly suggest that the front-end service relies on the catalogueservice. When catalogue fails, front-end reports errors.

Conclusion and Recommendation The root cause of the performance issue in the sock-shop namespace is the failure of the catalogue service.

I recommend that the engineering team immediately investigate the catalogue service to diagnose the cause of its high latency and error rates. The front-end service is expected to recover once the catalogue service is restored to a healthy state.

This project is part of:

Hack Week 25

Activity

  • 5 days ago: ygutierrez joined this project.
  • 5 days ago: ygutierrez left this project.
  • 6 days ago: jordimassaguerpla joined this project.
  • 10 days ago: pgonin liked this project.
  • 10 days ago: livdywan liked this project.
  • 12 days ago: rosblendido left this project.
  • 12 days ago: ygutierrez joined this project.
  • 14 days ago: mpiala liked this project.
  • 14 days ago: lkocman liked this project.
  • 18 days ago: thbertoldi joined this project.
  • 21 days ago: hcarvalho liked this project.
  • 26 days ago: jgouin liked this project.
  • 27 days ago: hsharma liked this project.
  • about 1 month ago: ygutierrez liked this project.
  • about 1 month ago: horon liked this project.
  • about 1 month ago: varelarg liked this project.
  • about 2 months ago: rosblendido joined this project.
  • about 2 months ago: drutigliano liked this project.
  • about 2 months ago: drutigliano added keyword "suseobservability" to this project.
  • about 2 months ago: drutigliano added keyword "ai" to this project.
  • about 2 months ago: drutigliano added keyword "agents" to this project.
  • about 2 months ago: drutigliano added keyword "agenticai" to this project.
  • about 2 months ago: drutigliano added keyword "mcpserver" to this project.
  • about 2 months ago: drutigliano added keyword "observability" to this project.
  • about 2 months ago: drutigliano added keyword "artificial-intelligence" to this project.
  • All Activity

    Comments

    • rcabello
      2 months ago by rcabello | Reply

      This project looks really interesting! I can help with the integration with the Rancher AI agent https://github.com/rancher-sandbox/rancher-ai-agent

    Similar Projects

    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    Multi-agent AI assistant for Linux troubleshooting by doreilly

    Description

    Explore multi-agent architecture as a way to avoid MCP context rot.

    Having one agent with many tools bloats the context with low-level details about tool descriptions, parameter schemas etc which hurts LLM performance. Instead have many specialised agents, each with just the tools it needs for its role. A top level supervisor agent takes the user prompt and delegates to appropriate sub-agents.

    Goals

    Create an AI assistant with some sub-agents that are specialists at troubleshooting Linux subsystems, e.g. systemd, selinux, firewalld etc. The agents can get information from the system by implementing their own tools with simple function calls, or use tools from MCP servers, e.g. a systemd-agent can use tools from systemd-mcp.

    Example prompts/responses:

    user$ the system seems slow
    assistant$ process foo with pid 12345 is using 1000% cpu ...
    
    user$ I can't connect to the apache webserver
    assistant$ the firewall is blocking http ... you can open the port with firewall-cmd --add-port ...
    

    Resources

    Language Python. The Python ADK is more mature than Golang.

    https://google.github.io/adk-docs/

    https://github.com/djoreilly/linux-helper


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    "what is it" file and directory analysis via MCP and local LLM, for console and KDE by rsimai

    Description

    Users sometimes wonder what files or directories they find on their local PC are good for. If they can't determine from the filename or metadata, there should an easy way to quickly analyze the content and at least guess the meaning. An LLM could help with that, through the use of a filesystem MCP and to-text-converters for typical file types. Ideally this is integrated into the desktop environment but works as well from a console. All data is processed locally or "on premise", no artifacts remain or leave the system.

    Goals

    • The user can run a command from the console, to check on a file or directory
    • The filemanager contains the "analyze" feature within the context menu
    • The local LLM could serve for other use cases where privacy matters

    TBD

    • Find or write capable one-shot and interactive MCP client
    • Find or write simple+secure file access MCP server
    • Create local LLM service with appropriate footprint, containerized
    • Shell command with options
    • KDE integration (Dolphin)
    • Package
    • Document

    Resources


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.

    Timeline

    Day 1 (of 4)

    • Tried out a RAG demo, expanded on feeding it my own data
    • Experimented with qwen3-coder to add a persistent chat functionality, and keeping vectors in a pickle file
    • Optimizations to keep everything within context window
    • Learn and add a bit of PyTest

    Day 2

    • More experimenting and more data
    • Study ChromaDB
    • Add a Web UI that works from another computer even though the container sees network is down

    Day 3

    • The above RAG is working well enough for demonstration purposes.
    • Pivot to trying out OpenCode, configuring local Ollama qwen3-coder there, to analyze the RAG demo.
    • Figured out how to configure Ollama template to be usable under OpenCode. OpenCode locally is super slow to just running qwen3-coder alone.

    Day 4 (final day)

    • Battle with OpenCode that was both slow and kept on piling up broken things.
    • Call it success as after all the agentic AI was working locally.
    • Clean up the mess left behind a bit.

    Blog Post

    Summarized the findings at blog post.


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    GenAI-Powered Systemic Bug Evaluation and Management Assistant by rtsvetkov

    Motivation

    What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

    Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

    Description

    To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic/Systemic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
    3. Implement Bugzillla call to collect the
    4. Implement Questioning Framework as LLVM pre-conditioning
    5. Define set of instructions
    6. Assemble the Tool

    Resources

    What are Systemic Questions?

    Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
    In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

    Gitlab Project

    gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question


    MCP Trace Suite by r1chard-lyu

    Description

    This project plans to create an MCP Trace Suite, a system that consolidates commonly used Linux debugging tools such as bpftrace, perf, and ftrace.

    The suite is implemented as an MCP Server. This architecture allows an AI agent to leverage the server to diagnose Linux issues and perform targeted system debugging by remotely executing and retrieving tracing data from these powerful tools.

    • Repo: https://github.com/r1chard-lyu/systracesuite
    • Demo: Slides

    Goals

    1. Build an MCP Server that can integrate various Linux debugging and tracing tools, including bpftrace, perf, ftrace, strace, and others, with support for future expansion of additional tools.

    2. Perform testing by intentionally creating bugs or issues that impact system performance, allowing an AI agent to analyze the root cause and identify the underlying problem.

    Resources

    • Gemini CLI: https://geminicli.com/
    • eBPF: https://ebpf.io/
    • bpftrace: https://github.com/bpftrace/bpftrace/
    • perf: https://perfwiki.github.io/main/
    • ftrace: https://github.com/r1chard-lyu/tracium/


    Background Coding Agent by mmanno

    Description

    I had only bad experiences with AI one-shots. However, monitoring agent work closely and interfering often did result in productivity gains.

    Now, other companies are using agents in pipelines. That makes sense to me, just like CI, we want to offload work to pipelines: Our engineering teams are consistently slowed down by "toil": low-impact, repetitive maintenance tasks. A simple linter rule change, a dependency bump, rebasing patch-sets on top of newer releases or API deprecation requires dozens of manual PRs, draining time from feature development.

    So far we have been writing deterministic, script-based automation for these tasks. And it turns out to be a common trap. These scripts are brittle, complex, and become a massive maintenance burden themselves.

    Can we make prompts and workflows smart enough to succeed at background coding?

    Goals

    We will build a platform that allows engineers to execute complex code transformations using prompts.

    By automating this toil, we accelerate large-scale migrations and allow teams to focus on high-value work.

    Our platform will consist of three main components:

    • "Change" Definition: Engineers will define a transformation as a simple, declarative manifest:
      • The target repositories.
      • A wrapper to run a "coding agent", e.g., "gemini-cli".
      • The task as a natural language prompt.
    • "Change" Management Service: A central service that orchestrates the jobs. It will receive Change definitions and be responsible for the job lifecycle.
    • Execution Runners: We could use existing sandboxed CI runners (like GitHub/GitLab runners) to execute each job or spawn a container.

    MVP

    • Define the Change manifest format.
    • Build the core Management Service that can accept and queue a Change.
    • Connect management service and runners, dynamically dispatch jobs to runners.
    • Create a basic runner script that can run a hard-coded prompt against a test repo and open a PR.

    Stretch Goals:

    • Multi-layered approach, Workflow Agents trigger Coding Agents:
      1. Workflow Agent: Gather information about the task interactively from the user.
      2. Coding Agent: Once the interactive agent has refined the task into a clear prompt, it hands this prompt off to the "coding agent." This background agent is responsible for executing the task and producing the actual pull request.
    • Use MCP:
      1. Workflow Agent gathers context information from Slack, Github, etc.
      2. Workflow Agent triggers a Coding Agent.
    • Create a "Standard Task" library with reliable prompts.
      1. Rebasing rancher-monitoring to a new version of kube-prom-stack
      2. Update charts to use new images
      3. Apply changes to comply with a new linter
      4. Bump complex Go dependencies, like k8s modules
      5. Backport pull requests to other branches
    • Add “review agents” that review the generated PR.

    See also


    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    Intelligent Vulnerability Detection for Private Registries by ibone.gonzalez

    Description:

    This project wants to build an MCP server that connects your LLM to your private registry. It fetches vulnerability reports, probably generated by Trivy, with all the CVEs, and uses the LLM to develop the exact terminal commands or containers updates needed to resolve them.

    Goals:

    Our goal is to build an MCP for private registries that:

    • Detects Vulnerabilities: Proactively finds risks in your packages.

    • Automates Security: Keeps software secure with automated checks and updates.

    • Fits Your Workflow: Integrates seamlessly so you never leave your tools.

    • Protects Privacy: Delivers actionable insights without compromising private data.

    To provide automated, privacy-first security for private packages that deliver actionable risk alerts directly within the developer’s existing workflow.

    Resources:

    Code:


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    https://docs.google.com/document/d/1HbAvgrg8T3pd1FIx74nEfCObCljpO77zz5In_Jpw4as/edit?usp=sharing## Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    https://docs.google.com/document/d/14gtG9-ZvVpBgkh33Z4AM6iLFWqZcicQPD41MM-Pg0/edit?usp=sharing


    MCP Server for SCC by digitaltomm

    Description

    Provide an MCP Server implementation for customers to access data on scc.suse.com via MCP protocol. The core benefit of this MCP interface is that it has direct (read) access to customer data in SCC, so the AI agent gets enhanced knowledge about individual customer data, like subscriptions, orders and registered systems.

    Architecture

    Schema

    Goals

    We want to demonstrate a proof of concept to connect to the SCC MCP server with any AI agent, for example gemini-cli or codex. Enabling the user to ask questions regarding their SCC inventory.

    For this Hackweek, we target that users get proper responses to these example questions:

    • Which of my currently active systems are running products that are out of support?
    • Do I have ready to use registration codes for SLES?
    • What are the latest 5 released patches for SLES 15 SP6? Output as a list with release date, patch name, affected package names and fixed CVEs.
    • Which versions of kernel-default are available on SLES 15 SP6?

    Technical Notes

    Similar to the organization APIs, this can expose to customers data about their subscriptions, orders, systems and products. Authentication should be done by organization credentials, similar to what needs to be provided to RMT/MLM. Customers can connect to the SCC MCP server from their own MCP-compatible client and Large Language Model (LLM), so no third party is involved.

    Milestones

    [x] Basic MCP API setup
      MCP endpoints
      [x] Products / Repositories
      [x] Subscriptions / Orders 
      [x] Systems
      [x] Packages
    [x] Document usage with Gemini CLI, Codex
    

    Resources

    Gemini CLI setup:

    ~/.gemini/settings.json:


    MCP Trace Suite by r1chard-lyu

    Description

    This project plans to create an MCP Trace Suite, a system that consolidates commonly used Linux debugging tools such as bpftrace, perf, and ftrace.

    The suite is implemented as an MCP Server. This architecture allows an AI agent to leverage the server to diagnose Linux issues and perform targeted system debugging by remotely executing and retrieving tracing data from these powerful tools.

    • Repo: https://github.com/r1chard-lyu/systracesuite
    • Demo: Slides

    Goals

    1. Build an MCP Server that can integrate various Linux debugging and tracing tools, including bpftrace, perf, ftrace, strace, and others, with support for future expansion of additional tools.

    2. Perform testing by intentionally creating bugs or issues that impact system performance, allowing an AI agent to analyze the root cause and identify the underlying problem.

    Resources

    • Gemini CLI: https://geminicli.com/
    • eBPF: https://ebpf.io/
    • bpftrace: https://github.com/bpftrace/bpftrace/
    • perf: https://perfwiki.github.io/main/
    • ftrace: https://github.com/r1chard-lyu/tracium/


    bpftrace contribution by mkoutny

    Description

    bpftrace is a great tool, no need to sing odes to it here. It can access any kernel data and process them in real time. It provides helpers for some common Linux kernel structures but not all.

    Goals

    • set up bpftrace toolchain
    • learn about bpftrace implementation and internals
    • implement support for percpu_counters
    • look into some of the first issues
    • send a refined PR (on Thu)

    Resources


    Explore LLM evaluation metrics by thbertoldi

    Description

    Learn the best practices for evaluating LLM performance with an open-source framework such as DeepEval.

    Goals

    Curate the knowledge learned during practice and present it to colleagues.

    -> Maybe publish a blog post on SUSE's blog?

    Resources

    https://deepeval.com

    https://docs.pactflow.io/docs/bi-directional-contract-testing


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    https://docs.google.com/document/d/1HbAvgrg8T3pd1FIx74nEfCObCljpO77zz5In_Jpw4as/edit?usp=sharing## Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    https://docs.google.com/document/d/14gtG9-ZvVpBgkh33Z4AM6iLFWqZcicQPD41MM-Pg0/edit?usp=sharing


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.

    Timeline

    Day 1 (of 4)

    • Tried out a RAG demo, expanded on feeding it my own data
    • Experimented with qwen3-coder to add a persistent chat functionality, and keeping vectors in a pickle file
    • Optimizations to keep everything within context window
    • Learn and add a bit of PyTest

    Day 2

    • More experimenting and more data
    • Study ChromaDB
    • Add a Web UI that works from another computer even though the container sees network is down

    Day 3

    • The above RAG is working well enough for demonstration purposes.
    • Pivot to trying out OpenCode, configuring local Ollama qwen3-coder there, to analyze the RAG demo.
    • Figured out how to configure Ollama template to be usable under OpenCode. OpenCode locally is super slow to just running qwen3-coder alone.

    Day 4 (final day)

    • Battle with OpenCode that was both slow and kept on piling up broken things.
    • Call it success as after all the agentic AI was working locally.
    • Clean up the mess left behind a bit.

    Blog Post

    Summarized the findings at blog post.


    "what is it" file and directory analysis via MCP and local LLM, for console and KDE by rsimai

    Description

    Users sometimes wonder what files or directories they find on their local PC are good for. If they can't determine from the filename or metadata, there should an easy way to quickly analyze the content and at least guess the meaning. An LLM could help with that, through the use of a filesystem MCP and to-text-converters for typical file types. Ideally this is integrated into the desktop environment but works as well from a console. All data is processed locally or "on premise", no artifacts remain or leave the system.

    Goals

    • The user can run a command from the console, to check on a file or directory
    • The filemanager contains the "analyze" feature within the context menu
    • The local LLM could serve for other use cases where privacy matters

    TBD

    • Find or write capable one-shot and interactive MCP client
    • Find or write simple+secure file access MCP server
    • Create local LLM service with appropriate footprint, containerized
    • Shell command with options
    • KDE integration (Dolphin)
    • Package
    • Document

    Resources


    DNS management with DNSControl by itorres

    Description

    We use several systems to manage DNS at SUSE and openSUSE: BIND, external providers, PowerDNS... each of them is managed in a different way either with raw zones (BIND) or Terraform (external providers).

    DNSControl is an opinionated tool to manage DNS as code while being provider agnostic. It's developed and used by StackExchange, was spearheaded by Tom Limoncelly and is already being used to manage DNS for openSUSE.

    Implementing DNSControl should allow us to have a single DNS operations interface that end users can leverage.

    This would reduce complexity for end users as they can use a single simplified ECMAScript based DSL instead of BIND zones for internal and HCL config for external.

    Operations for our IT organization would be greatly reduced. DNSControl itself has several internal checks that reduce our need to do linting and we can concentrate on implementing logical checks based on ownership.

    This simplifies reviews a lot and the integration with BIND and providers allows our IT organization to implement an apply on merge.

    At an organizational level it will separate our DNS tasks from other IT operations, speeding up DNS changes and allowing us to delegate DNS reviews to service desk or even customer teams through CODEOWNERS.

    Goals

    • Create a test subdomain in one of our internal BIND servers to be managed with DNSControl.
    • Create an internal DNSControl repository to implement gitops for DNS.
    • Deploy DNS changes strictly through gitops.

    Extended goals

    • Implement CODEOWNERS.
    • Replicate main goals for external DNS.

    Resources


    Explore LLM evaluation metrics by thbertoldi

    Description

    Learn the best practices for evaluating LLM performance with an open-source framework such as DeepEval.

    Goals

    Curate the knowledge learned during practice and present it to colleagues.

    -> Maybe publish a blog post on SUSE's blog?

    Resources

    https://deepeval.com

    https://docs.pactflow.io/docs/bi-directional-contract-testing


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    https://docs.google.com/document/d/1HbAvgrg8T3pd1FIx74nEfCObCljpO77zz5In_Jpw4as/edit?usp=sharing## Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    https://docs.google.com/document/d/14gtG9-ZvVpBgkh33Z4AM6iLFWqZcicQPD41MM-Pg0/edit?usp=sharing


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/