Description

Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

Goals

By the end of Hack Week, we aim to have a single, working Python script that:

  1. Connects to Prometheus and executes a query to fetch detailed test failure history.
  2. Processes the raw data into a format suitable for the Gemini API.
  3. Successfully calls the Gemini API with the data and a clear prompt.
  4. Parses the AI's response to extract a simple list of flaky tests.
  5. Saves the list to a JSON file that can be displayed in Grafana.
  6. New panel in our Dashboard listing the Flaky tests

Resources

Outcome

Looking for hackers with the skills:

uyuni prometheus grafana ai completed

This project is part of:

Hack Week 25

Activity

  • 2 months ago: jordimassaguerpla liked this project.
  • 2 months ago: oscar-barrios added keyword "completed" to this project.
  • 2 months ago: deneb_alpha liked this project.
  • 3 months ago: ygutierrez liked this project.
  • 4 months ago: oscar-barrios liked this project.
  • 4 months ago: oscar-barrios added keyword "uyuni" to this project.
  • 4 months ago: oscar-barrios added keyword "prometheus" to this project.
  • 4 months ago: oscar-barrios added keyword "grafana" to this project.
  • 4 months ago: oscar-barrios added keyword "ai" to this project.
  • 4 months ago: oscar-barrios started this project.
  • 4 months ago: oscar-barrios left this project.
  • 4 months ago: oscar-barrios started this project.
  • 4 months ago: oscar-barrios originated this project.

  • Comments

    • oscar-barrios
      2 months ago by oscar-barrios | Reply

      The code of the flaky detector is here: https://github.com/srbarrios/jenkins-flaky-tests-detector

      I also published a Docker container to use it here: https://github.com/srbarrios/jenkins-flaky-tests-detector/pkgs/container/jenkins-flaky-tests-detector

      The plan now is to write a Salt state in our MLM internal infra, so it runs this container, it expose the results in a web server running on the container, and then I parse it on Grafana.

    • oscar-barrios
      2 months ago by oscar-barrios | Reply

      I created the new Grafana dashboard for Uyuni here: https://grafana.mgr.suse.de/d/flaky-tests/flaky-tests-detection?orgId=1&from=now-6h&to=now&timezone=browser&refresh=1m

      Next step now is to build it in a way that I can get the flaky tests for all the Jenkins job test results that we monitoring in MLM.

    • oscar-barrios
      2 months ago by oscar-barrios | Reply

      Now we can select any of the running test suites, and get a list of the most probable flaky tests :)

    • oscar-barrios
      2 months ago by oscar-barrios | Reply

      I will consider this hackweek done for now, to move to my second hackweek project. The outcome it has been good, I must admit that I also vibe coded some parts using Gemini 3. Also, the script analyzing the prometheus series is not relying only on a LLM call, but it also do a first triage based on a simple algorithm, saving resources to ask AI only for ambiguos and complex test failures.

    Similar Projects

    Set Uyuni to manage edge clusters at scale by RDiasMateus

    Description

    Prepare a Poc on how to use MLM to manage edge clusters. Those cluster are normally equal across each location, and we have a large number of them.

    The goal is to produce a set of sets/best practices/scripts to help users manage this kind of setup.

    Goals

    step 1: Manual set-up

    Goal: Have a running application in k3s and be able to update it using System Update Controler (SUC)

    • Deploy Micro 6.2 machine
    • Deploy k3s - single node

      • https://docs.k3s.io/quick-start
    • Build/find a simple web application (static page)

      • Build/find a helmchart to deploy the application
    • Deploy the application on the k3s cluster

    • Install App updates through helm update

    • Install OS updates using MLM

    step 2: Automate day 1

    Goal: Trigger the application deployment and update from MLM

    • Salt states For application (with static data)
      • Deploy the application helmchart, if not present
      • install app updates through helmchart parameters
    • Link it to GIT
      • Define how to link the state to the machines (based in some pillar data? Using configuration channels by importing the state? Naming convention?)
      • Use git update to trigger helmchart app update
    • Recurrent state applying configuration channel?

    step 3: Multi-node cluster

    Goal: Use SUC to update a multi-node cluster.

    • Create a multi-node cluster
    • Deploy application
      • call the helm update/install only on control plane?
    • Install App updates through helm update
    • Prepare a SUC for OS update (k3s also? How?)
      • https://github.com/rancher/system-upgrade-controller
      • https://documentation.suse.com/cloudnative/k3s/latest/en/upgrades/automated.html
      • Update/deploy the SUC?
      • Update/deploy the SUC CRD with the update procedure


    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Ansible to Salt integration by vizhestkov

    Description

    We already have initial integration of Ansible in Salt with the possibility to run playbooks from the salt-master on the salt-minion used as an Ansible Control node.

    In this project I want to check if it possible to make Ansible working on the transport of Salt. Basically run playbooks with Ansible through existing established Salt (ZeroMQ) transport and not using ssh at all.

    It could be a good solution for the end users to reuse Ansible playbooks or run Ansible modules they got used to with no effort of complex configuration with existing Salt (or Uyuni/SUSE Multi Linux Manager) infrastructure.

    Goals

    • [v] Prepare the testing environment with Salt and Ansible installed
    • [v] Discover Ansible codebase to figure out possible ways of integration
    • [v] Create Salt/Uyuni inventory module
    • [v] Make basic modules to work with no using separate ssh connection, but reusing existing Salt connection
    • [v] Test some most basic playbooks

    Resources

    GitHub page

    Video of the demo


    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    What if infrastructure scaled itself instead of making you scale it?

    Can we use existing Rancher capabilities like CAPI, autoscaling, and GitOps to make this simpler instead of building everything from scratch?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.

    Nah, let's be honest add-emoji AI helped a lot to vibe code a good part of the Ruby methods of the Test framework, moving them to Typescript, along with the migration from Capybara to Playwright. I've been using "Cline" as plugin for WebStorm IDE, using Gemini API behind it.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakiness.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources