Description

Experiment with several Neovim plugins that integrate AI model providers such as Gemini and Ollama.

Goals

Evaluate how these plugins enhance the development workflow, how they differ in capabilities, and how smoothly they integrate into Neovim for day-to-day coding tasks.

Resources

Looking for hackers with the skills:

obs ai gemini ollama neovim

This project is part of:

Hack Week 25

Activity

  • about 1 month ago: cbosdonnat liked this project.
  • about 1 month ago: enavarro_suse added keyword "obs" to this project.
  • about 1 month ago: enavarro_suse added keyword "ai" to this project.
  • about 1 month ago: enavarro_suse added keyword "gemini" to this project.
  • about 1 month ago: enavarro_suse added keyword "ollama" to this project.
  • about 1 month ago: enavarro_suse added keyword "neovim" to this project.
  • about 1 month ago: enavarro_suse started this project.
  • about 1 month ago: enavarro_suse originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Switch software-o-o to store repomd in a database by hennevogel

    Description

    The openSUSE Software portal is a web app to explore binary packages of openSUSE distributions. Kind of like an package manager / app store.

    https://software.opensuse.org/

    This app has been around forever (August 2007) and it's architecture is a bit brittle. It acts as a frontend to the OBS distributions and published binary search APIs, calculates and caches a lot of stuff in memory and needs code changes nearly every openSUSE release to keep up.

    As you can imagine, it's a heavy user of the OBS API, especially when caches are cold.

    Goals

    I want to change the app to cache repomod data in a (postgres) database structure

    • Distributions have many Repositories
    • Repositories have many Packages
    • Packages have many Patches

    The UI workflows will be as following

    • As an admin I setup Distribution and it's repositories
    • As an admin I sync all repositories repomd files into to the database
    • As a user I browse a Distribution by category
    • As a user I search for Package of a Distribution in it's Repositories
    • As a user I extend the search to Package build on OBS for this Distribution

    This has a couple of pro's:

    • Less traffic on the OBS API as the usual Packages are inside the database
    • Easier base to add features to this page. Like comments, ratings, openSUSE specific screenshots etc.
    • Separating the Distribution package search from searching through OBS will hopefully make more clear for newbies that enabling extra repositories is kind of dangerous.

    And one con:

    • You can't search for packages build for foreign distributions with this app anymore (although we could consume their repomd etc. but I doubt we have the audience on an opensuse.org domain...)

    TODO

    • add-emoji Introduce a PG database
    • add-emoji Add clockworkd as scheduler and delayed_job as ActiveJob backend
    • add-emoji Introduce ActiveStorage
    • add-emoji Build initial data model
    • add-emoji Introduce repomd to database sync
      • add-emoji Adapt repomd sync to Leap 16.0 repomod layout changes (single arch, no update repo)
      • add-emoji Make repomd sync idempotent
    • add-emoji Introduce database search
    • add-emoji Setup foreman to run rails s and rake jobs:workoff
    • Adapt UI
      • add-emoji Build Category Browsing
      • add-emoji Build Admin Distribution CRUD interface


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Create a page with all devel:languages:perl packages and their versions by tinita

    Description

    Perl projects now live in git: https://src.opensuse.org/perl

    It would be useful to have an easy way to check which version of which perl module is in devel:languages:perl. Also we have meta overrides and patches for various modules, and it would be good to have them at a central place, so it is easier to lookup, and we can share with other vendors.

    I did some initial data dump here a while ago: https://github.com/perlpunk/cpan-meta

    But I never had the time to automate this.

    I can also use the data to check if there are necessary updates (currently it uses data from download.opensuse.org, so there is some delay and it depends on building).

    Goals

    • Have a script that updates a central repository (e.g. https://src.opensuse.org/perl/_metadata) with metadata by looking at https://src.opensuse.org/perl/_ObsPrj (check if there are any changes from the last run)
    • Create a HTML page with the list of packages (use Javascript and some table library to make it easily searchable)

    Resources

    Results

    Day 1

    Day 2

    • HTML Page has now links to src.opensuse.org and the date of the last update, plus a short info at the top
    • Code is now 100% covered by tests: https://app.codecov.io/gh/perlpunk/opensuse-perl-meta
    • I used the modern perl class feature, which makes perl classes even nicer and shorter. See example
    • Tests
      • I tried out the mocking feature of the modern Test2::V0 library which provides call tracking. See example
      • I tried out comparing data structures with the new Test2::V0 library. It let's you compare parts of the structure with the like function, which only compares the date that is mentioned in the expected data. example

    Day 3

    • Added various things to the table
      • Dependencies column
      • Show popup with info for cpanspec, patches and dependencies
      • Added last date / commit to the data export.

    Plan: With the added date / commit we can now daily check _ObsPrj for changes and only fetch the data for changed packages.

    Day 4


    Improvements to osc (especially with regards to the Git workflow) by mcepl

    Description

    There is plenty of hacking on osc, where we could spent some fun time. I would like to see a solution for https://github.com/openSUSE/osc/issues/2006 (which is sufficiently non-serious, that it could be part of HackWeek project).


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    GenAI-Powered Systemic Bug Evaluation and Management Assistant by rtsvetkov

    Motivation

    What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

    Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

    Description

    To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic/Systemic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
    3. Implement Bugzillla call to collect the
    4. Implement Questioning Framework as LLVM pre-conditioning
    5. Define set of instructions
    6. Assemble the Tool

    Resources

    What are Systemic Questions?

    Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
    In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

    Gitlab Project

    gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    GenAI-Powered Systemic Bug Evaluation and Management Assistant by rtsvetkov

    Motivation

    What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

    Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

    Description

    To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic/Systemic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
    3. Implement Bugzillla call to collect the
    4. Implement Questioning Framework as LLVM pre-conditioning
    5. Define set of instructions
    6. Assemble the Tool

    Resources

    What are Systemic Questions?

    Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
    In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

    Gitlab Project

    gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question


    Minimal neovim LSP setup, without any external plugin. by wqu_suse

    Description

    Neovim is getting more and more built-in features, from LSP client, snippet to auto-completion.

    Now it's possible to built a neovim IDE environment, with built-in lsp, snippet and auto-completion, without any external plugin.

    Goals

    Use a minimal init.lua only, without any nvim package manager nor external plugin, to build an IDE environment, which can:

    • Use LSP to do context aware context lookup
    • Auto-complete function name, parameter list etc
    • Support multiple LSP servers for different languages

    Linux kernel and btrfs-progs will be used as the example projects.

    Resources

    https://github.com/adam900710/nvimsimpleconfig