Motivation

What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

Description

To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

Goals

Set up a Python environment

Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

Build the Dialogue Loop

  1. Write a basic Python script using the Gemini API.
  2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

Socratic/Systemic Strategy Implementation

  1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
  2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
  3. Implement Bugzillla call to collect the
  4. Implement Questioning Framework as LLVM pre-conditioning
  5. Define set of instructions
  6. Assemble the Tool

Resources

What are Systemic Questions?

Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

Gitlab Project

gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question

Looking for hackers with the skills:

ai gemini bugzilla genai

This project is part of:

Hack Week 25

Activity

  • 2 months ago: rtsvetkov added keyword "genai" to this project.
  • 3 months ago: rtsvetkov added keyword "bugzilla" to this project.
  • 3 months ago: t.huynh liked this project.
  • 3 months ago: ybonatakis liked this project.
  • 3 months ago: doreilly liked this project.
  • 3 months ago: ancorgs liked this project.
  • 3 months ago: rtsvetkov added keyword "ai" to this project.
  • 3 months ago: rtsvetkov added keyword "gemini" to this project.
  • 3 months ago: rtsvetkov started this project.
  • 3 months ago: rtsvetkov liked this project.
  • 3 months ago: rtsvetkov originated this project.

  • Comments

    • rtsvetkov
      2 months ago by rtsvetkov | Reply

      === 1 Circular Questions Focus on feedback loops and mutual influence. Example debugging prompts: - "What components influence this module, and what does this module influence in return?" - "If Service A slows down, how does Service B respond?"

      === 2 Difference Questions Explore variations, exceptions, or changes over time. Example debugging prompts: - "When does the bug not occur? What is different then?" - "What changed in the system right before the issue appeared?"

      === 3 Scaling Questions Quantify experience, severity, or uncertainty. Example debugging prompts: - "On a scale from 1–10, how reproducible is this issue?" - "How much worse does the system behave under peak load versus normal load?"

      === 4 Hypothetical (‘If…Then’) Questions Explore consequences, alternative actions, or simulated scenarios. Example debugging prompts: - "If we disable caching, what do we expect to happen?" - "If the input doubles, which component fails first?" - "If had a unlimited time to prevent this exact bug from ever happening again, where in our development cycle (e.g., design, code review, testing) would we invest the most effort?" - "If we had to ship the next feature without fixing this bug, what workarounds or manual steps would we need to put in place?"

      === 5 Resource / Strength Questions Identify what works well and what can be reused. Example debugging prompts: - "Which environments run without this problem and why?" - "What parts of the system are stable and can guide the fix?"

      === 6 Perspective-Shifting Questions Examine the situation through different roles or components. Example debugging prompts: - "If you were the database, what would you ‘say’ is overwhelming you?" - "How would a network engineer interpret these logs differently from a backend developer?"

      == 2. Example Debugging Process Using Systemic Questions

      === Step 1: Clarify the Pattern - "When exactly does the API fail, and when does it succeed?"

      === Step 2: Identify Boundaries - "Which systems are definitely not involved?"

      === Step 3: Explore Changes - "What recent deployments or config changes might correlate?"

      === Step 4: Map Influences - "How does the latency of Service X influence the behaviour of Service Y?"

      === Step 5: Hypothesis Testing - "If we simulate traffic spikes, does the behaviour match production incidents?"

      === Step 6: Leverage What Works - "Why does staging not show the issue? What can this teach us about production?"

      == 3. Key Benefits for IT and Systems Theory * Makes hidden dependencies visible
      * Avoids tunnel vision in debugging
      * Encourages team alignment through shared system understanding
      * Supports root-cause analysis rather than symptom chasing

    • rtsvetkov
      2 months ago by rtsvetkov | Reply

      Example manual research session: https://docs.google.com/document/d/1kgM0lBVavBnN0VeP1OgssWVjwIdE2hGf3jHmi2rxc/edit?usp=sharing

      as also the additional transaction on https://bugzilla.suse.com/show_bug.cgi?id=1245907

      the session https://gemini.google.com/app/dd379133b4af2ec8?utmsource=applauncher&utmmedium=owned&utmcampaign=base_all

    • rtsvetkov
      2 months ago by rtsvetkov | Reply

      Made a Gem: https://gemini.google.com/gem/1FVNTDtBRR8GD8fd3H01LGHxbhzYtz3vb?usp=sharing

    • rtsvetkov
      2 months ago by rtsvetkov | Reply

      Git lab Code: https://gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question/

    • rtsvetkov
      2 months ago by rtsvetkov | Reply

      Some results: https://bugzilla.suse.com/show_bug.cgi?id=1245907#c8

    • rtsvetkov
      about 2 months ago by rtsvetkov | Reply

      Adding a port for DeepSeek add-emoji

    • rtsvetkov
      about 2 months ago by rtsvetkov | Reply

      Bugzilla code works as als the Gemini Gem part. Need to commit the last changes to the repo

    Similar Projects

    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    "what is it" file and directory analysis via MCP and local LLM, for console and KDE by rsimai

    Description

    Users sometimes wonder what files or directories they find on their local PC are good for. If they can't determine from the filename or metadata, there should an easy way to quickly analyze the content and at least guess the meaning. An LLM could help with that, through the use of a filesystem MCP and to-text-converters for typical file types. Ideally this is integrated into the desktop environment but works as well from a console. All data is processed locally or "on premise", no artifacts remain or leave the system.

    Goals

    • The user can run a command from the console, to check on a file or directory
    • The filemanager contains the "analyze" feature within the context menu
    • The local LLM could serve for other use cases where privacy matters

    TBD

    • Find or write capable one-shot and interactive MCP client
    • Find or write simple+secure file access MCP server
    • Create local LLM service with appropriate footprint, containerized
    • Shell command with options
    • KDE integration (Dolphin)
    • Package
    • Document

    Resources


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Try out Neovim Plugins supporting AI Providers by enavarro_suse

    Description

    Experiment with several Neovim plugins that integrate AI model providers such as Gemini and Ollama.

    Goals

    Evaluate how these plugins enhance the development workflow, how they differ in capabilities, and how smoothly they integrate into Neovim for day-to-day coding tasks.

    Resources


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    issuefs: FUSE filesystem representing issues (e.g. JIRA) for the use with AI agents code-assistants by llansky3

    Description

    Creating a FUSE filesystem (issuefs) that mounts issues from various ticketing systems (Github, Jira, Bugzilla, Redmine) as files to your local file system.

    And why this is good idea?

    • User can use favorite command line tools to view and search the tickets from various sources
    • User can use AI agents capabilities from your favorite IDE or cli to ask question about the issues, project or functionality while providing relevant tickets as context without extra work.
    • User can use it during development of the new features when you let the AI agent to jump start the solution. The issuefs will give the AI agent the context (AI agents just read few more files) about the bug or requested features. No need for copying and pasting issues to user prompt or by using extra MCP tools to access the issues. These you can still do but this approach is on purpose different.

    Goals

    1. Add Github issue support
    2. Proof the concept/approach by apply the approach on itself using Github issues for tracking and development of new features
    3. Add support for Bugzilla and Redmine using this approach in the process of doing it. Record a video of it.
    4. Clean-up and test the implementation and create some documentation
    5. Create a blog post about this approach

    Resources

    There is a prototype implementation here. This currently sort of works with JIRA only.