
Description
A couple of years ago I created StegoSecretS, a small cli used to encrypt and split a secret into multiple keys, using the Shamir's Secret Sharing algorithm.
The idea is to re-implement the project using physical devices. One device alone will be useless, but when close together they can be used to decrypt the secret.
On a practical side the user encrypts the secret with a mobile application. The same application is used to split the secret, and load the partial keys into different micro-controllers. Another user will be able to decrypt the secret only having at least N devices close together (using the application).
I'm planning to use a couple of ESP32-C3 I bought, and build a very simple Android mobile application.
Goals
- Learn about Rust and micro-controllers (ESP32-C3)
- Learn about mobile applications (Android and Kotlin)
Resources
This project is part of:
Hack Week 24
Activity
Comments
Be the first to comment!
Similar Projects
Play with esp32 to create domotics stuff by aginies
Description
Play with ESP32 board and multiple small peripherals
https://github.com/aginies/domotique
Goals
- Finish the pool project
- add support of NFC auth in the door project
- improve the doc
- project to manage solar panel (router)
Resources
esp32 home
Capyboard, ESP32 Development Board for Education by emiler
Capyboard is an ESP32 development board built to accept individual custom-made modules. The board is created primarily for use in education, where you want to focus on embedded programming instead of spending time with connecting cables and parts on a breadboard, as you would with Arduino and other such devices. The board is not limited only to education and it can be used to build, for instance, a very powerful internal meteo-station and so on.
- github.com/realcharmer/capyboard
- github.com/realcharmer/capyboard-starter
- github.com/realcharmer/capyboard-docs
- github.com/realcharmer/capyboard-examples
- docs.capyboard.dev
Hack Week 25
My plan is to create a new revision of the board with updated dimensions and possibly even use a new ESP32 with Zigbee/Thread support. I also want to create an extensive library of example projects and expand the documentation. It would be nice to also design additional modules, such multiplexer or an environment module.
Goals
- Implement changes to a new board revision
- Design additional modules
- Expand documentation and examples
- Migrate documentation backend from MkDocs to Zensical
Hack Week 24
I created a new motherboard revision after testing my previous prototype, as well as a light module. This project was also a part of my master's thesis, which was defended successfully.
Goals
- Finish testing of a new prototype
- Publish source files
- Documentation completion
- Finish writing thesis
Modal editor in Rust by acervesato
Description
To write a modal editor in Rust inspired by vim and having the following features:
- vim basic motion commands + insert/visual mode
- multiple buffers with tabs
- status bar
It should be written for terminal only using ratatui library and crossterm.
Goals
The goal is to start with a functional prototype that can be extended in the future with the following features (in random order):
- treesitter support + styles
- fuzzy finder
- grep finder
- integration with git
- tree viewer
- internal terminal floating window
- mailing list workflow integration
Resources
AI-Powered Unit Test Automation for Agama by joseivanlopez
The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:
- Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
- TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
- Ruby: Integrates existing, robust YaST libraries (e.g.,
yast-storage-ng) to reuse established functionality.
The Problem: Testing Overhead
Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.
The Solution: AI-Driven Automation
This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:
- Automatically generate new unit tests as code is developed.
- Intelligently correct and update existing unit tests when the application code changes.
By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.
Goals
- Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g.,
gemini-cli) to automatically generate unit tests. - Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
- Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.
Contribution & Resources
We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.
If you want to dive deep into AI for software quality, please reach out and join the effort!
- Authorized AI Tools: Tools supported by SUSE (e.g.,
gemini-cli) - Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.
Interesting Links
RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso
Description
The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.
We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.
This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.
The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.
Goals
The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.
Key goals for the week:
- Analyze & Identify: Dive into the
SUSE/rmtRuby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions). - Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
- Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like
rb-sysormagnus. - Benchmark: Create a benchmarking script (e.g., using
k6,ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients. - Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.
Resources
- RMT Source Code (Ruby):
https://github.com/SUSE/rmt
- RMT Documentation:
https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
- Tooling & Stacks:
- RMT/Ruby development environment (for running the base RMT)
- Rust development environment (
rustup,cargo)
- Potential Integration Libraries:
- rb-sys:
https://github.com/oxidize-rb/rb-sys - Magnus:
https://github.com/matsadler/magnus
- rb-sys:
- Benchmarking Tools:
k6(https://k6.io/)ab(ApacheBench)
Looking at Rust if it could be an interesting programming language by jsmeix
Get some basic understanding of Rust security related features from a general point of view.
This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.
The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.
An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.
Create an Android app for Syncthing as part of the Syncthing Tray project by mkittler
Description
There's already an app but code/features already in Syncthing Tray could be reused to create a nicer app with additional features like managing ignore patterns more easily. The additional UI code for the app could then in turn be re-used by other parts of Syncthing Tray, e.g. to implement further steps in the wizard as requested by some users. This way one "UI wrapper codebase" could serve GNU/Linux, Windows and Android (and in theory MacOS) at the same time which is kind of neat.
Goals
- DONE: Learn more about development for Android and development of UIs with Qt Quick
- DONE: Create an experimental app reusing as much existing Syncthing Tray code as possible
- DONE: Build Syncthing as a library also for Android and use it in the app (already done but needs further testing and integration with the rest of the app configuration)
- DONE: Update the Syncthing Tray website, documentation
- DONE: Extend the app so it has at least a start page and an import
- Update forum thread
- DONE: Upload an experimental build on GitHub
- Extend the Syncthing API to download single files on demand (instead of having to sync the whole directory or use ignore patterns)
- Bring back parts of the newly developed mobile UI back to Syncthing Tray on the desktop to fully benefit from the cross-platform development
- Add UI to add/edit folders and devices in desktop tray app
- Add UI to show out-of-sync items in desktop tray app
- Create an alternative "AppWindow" tailored for desktop platforms reusing UI components developed for the mobile app
Resources
- Android SDK/NDK and emulator
- Qt Quick