Combined icons of k3s and Uyuni

Building on the lessons learned in the previous HackWeek, attack the Server specifically to create a set of containers deployable on k3s via Helm.

Goal for this Hackweek

  • create a Helm chart to run a self-sufficient Uyuni Server, starting with one fat containers with mounted volumes
  • slice off PostgreSQL in its own container
  • slice off some other component in their own container
  • bonus points: run the end-to-end testsuite!

Project coordination is on the Wiki project page

Looking for hackers with the skills:

containers k3s k8s kubernetes uyuni manager susemanager docker podman helm

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: j_renner liked this project.
  • over 2 years ago: paulgonin liked this project.
  • over 2 years ago: RDiasMateus joined this project.
  • over 2 years ago: mbussolotto liked this project.
  • almost 3 years ago: moio added keyword "helm" to this project.
  • almost 3 years ago: moio added keyword "manager" to this project.
  • almost 3 years ago: moio added keyword "susemanager" to this project.
  • almost 3 years ago: moio added keyword "docker" to this project.
  • almost 3 years ago: moio added keyword "podman" to this project.
  • almost 3 years ago: moio added keyword "containers" to this project.
  • almost 3 years ago: moio added keyword "k3s" to this project.
  • almost 3 years ago: moio added keyword "k8s" to this project.
  • almost 3 years ago: moio added keyword "kubernetes" to this project.
  • almost 3 years ago: moio added keyword "uyuni" to this project.
  • almost 3 years ago: moio started this project.
  • almost 3 years ago: moio liked this project.
  • almost 3 years ago: moio originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Enable the containerized Uyuni server to run on different host OS by j_renner

    Description

    The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:

    • openSUSE Leap
    • Cent OS 7
    • Ubuntu
    • ???

    Goals

    Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Small healthcheck tool for Longhorn by mbrookhuis

    Project Description

    We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

    As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

    This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

    Goal for this Hackweek

    At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

    Overview

    This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

    • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

    • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

    • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

    If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

    The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

    The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

    Installation

    To install this project, perform the following steps:

    • Create the directory /opt/k8s-check

    mkdir /opt/k8s-check

    • Copy all the file to this directory and make the following changes:

    chmod +x k8s-check.py


    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Metrics Server viewer for Kubernetes by bkampen

    This project is finished please visit the github repo below for the tool.

    Description

    Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.

    Goals

    • Learn more about metrics-server
    • Learn more about the inner workings of Kubernetes.
    • Learn more about Go

    Resources

    https://github.com/bvankampen/metrics-viewer


    Learn enough Golang and hack on CoreDNS by jkuzilek

    Description

    I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.

    To remedy this issue, a simple filtering mechanism has to be implemented.

    Goals

    • Learn an acceptable amount of Golang
    • Implement GatewayClass (and IngressClass) filtering for k8s_gateway
    • Deploy on homelab cluster
    • Profit?

    Resources

    EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.


    Install Uyuni on Kubernetes in cloud-native way by cbosdonnat

    Description

    For now installing Uyuni on Kubernetes requires running mgradm on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.

    Goals

    Install Uyuni from Rancher UI.

    Resources


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Enable the containerized Uyuni server to run on different host OS by j_renner

    Description

    The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:

    • openSUSE Leap
    • Cent OS 7
    • Ubuntu
    • ???

    Goals

    Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).


    Saline (state deployment control and monitoring tool for SUSE Manager/Uyuni) by vizhestkov

    Project Description

    Saline is an addition for salt used in SUSE Manager/Uyuni aimed to provide better control and visibility for states deploymend in the large scale environments.

    In current state the published version can be used only as a Prometheus exporter and missing some of the key features implemented in PoC (not published). Now it can provide metrics related to salt events and state apply process on the minions. But there is no control on this process implemented yet.

    Continue with implementation of the missing features and improve the existing implementation:

    • authentication (need to decide how it should be/or not related to salt auth)

    • web service providing the control of states deployment

    Goal for this Hackweek

    • Implement missing key features

    • Implement the tool for state deployment control with CLI

    Resources

    https://github.com/openSUSE/saline


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).
    • [W] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [I] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?
    • [W] Applying any basic salt state (including a formula)
    • [W] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    Saline (state deployment control and monitoring tool for SUSE Manager/Uyuni) by vizhestkov

    Project Description

    Saline is an addition for salt used in SUSE Manager/Uyuni aimed to provide better control and visibility for states deploymend in the large scale environments.

    In current state the published version can be used only as a Prometheus exporter and missing some of the key features implemented in PoC (not published). Now it can provide metrics related to salt events and state apply process on the minions. But there is no control on this process implemented yet.

    Continue with implementation of the missing features and improve the existing implementation:

    • authentication (need to decide how it should be/or not related to salt auth)

    • web service providing the control of states deployment

    Goal for this Hackweek

    • Implement missing key features

    • Implement the tool for state deployment control with CLI

    Resources

    https://github.com/openSUSE/saline


    Create SUSE Manager users from ldap/ad groups by mbrookhuis

    Description

    This tool is used to create users in SUSE Manager Server based on LDAP/AD groups. For each LDAP/AD group a role within SUSE Manager Server is defined. Also, the tool will check if existing users still have the role they should have, and, if not, it will be corrected. The same for if a user is disabled, it will be enabled again. If a users is not present in the LDAP/AD groups anymore, it will be disabled or deleted, depending on the configuration.

    The code is written for Python 3.6 (the default with SLES15.x), but will also work with newer versions. And works against SUSE Manger 4.3 and 5.x

    Goals

    Create a python and/or golang utility that will manage users in SUSE Manager based on LDAP/AD group-membership. In a configuration file is defined which roles the members of a group will get.

    Table of contents

    Installation

    To install this project, perform the following steps:

    • Be sure that python 3.6 is installed and also the module python3-PyYAML. Also the ldap3 module is needed:

    bash zypper in python3 python3-PyYAML pip install yaml

    • On the server or PC, where it should run, create a directory. On linux, e.g. /opt/sm-ldap-users

    • Copy all the file to this directory.

    • Edit the configsm.yaml. All parameters should be entered. Tip: for the ldap information, the best would be to use the same as for SSSD.

    • Be sure that the file sm-ldap-users.py is executable. It would be good to change the owner to root:root and only root can read and execute:

    bash chmod 600 * chmod 700 sm-ldap-users.py chown root:root *

    Usage

    This is very simple. Once the configsm.yaml contains the correct information, executing the following will do the magic:

    bash /sm-ldap-users.py

    repository link

    https://github.com/mbrookhuis/sm-ldap-users


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Migrate from Docker to Podman by tjyrinki_suse

    Description

    I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.

    Goals

    • Update OS.
    • Migrate from Docker to Podman.
    • Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
    • Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
    • Try to enable the Podman use in production.
    • At minimum, learn about all of these topics.
    • Optionally, improve Ansible side of things as well...

    Resources

    A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.


    Migrate from Docker to Podman by tjyrinki_suse

    Description

    I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.

    Goals

    • Update OS.
    • Migrate from Docker to Podman.
    • Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
    • Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
    • Try to enable the Podman use in production.
    • At minimum, learn about all of these topics.
    • Optionally, improve Ansible side of things as well...

    Resources

    A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.