Description

As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

Goals

  1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
  2. Create NFS-Ganesha Container Image on OBS: Image
  3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

Resources

NFS-Ganesha

Looking for hackers with the skills:

nfs nfs-ganesha golang kubernetes

This project is part of:

Hack Week 24

Activity

  • 4 months ago: wombelix liked this project.
  • 4 months ago: zchang liked this project.
  • 4 months ago: vcheng added keyword "nfs" to this project.
  • 4 months ago: vcheng added keyword "nfs-ganesha" to this project.
  • 4 months ago: vcheng added keyword "golang" to this project.
  • 4 months ago: vcheng added keyword "kubernetes" to this project.
  • 4 months ago: vcheng started this project.
  • 4 months ago: vcheng originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    file-organizer: A CLI Tool for Efficient File Management by okhatavkar

    Description

    Create a Go-based CLI tool that helps organize files in a specified folder by sorting them into subdirectories based on defined criteria, such as file type or creation date. Users will pass a folder path as an argument, and the tool will process and organize the files within it.

    Goals

    • Develop Go skills by building a practical command-line application.
    • Learn to manage and manipulate files and directories in Go using standard libraries.
    • Create a tool that simplifies file management, making it easier to organize and maintain directories.

    Resources

    • Go Standard Libraries: Utilize os, filepath, and time for file operations.
    • CLI Development: Use flag for basic argument parsing or consider cobra for enhanced functionality.
    • Go Learning Material: Go by Example and The Go Programming Language Documentation.

    Features

    • File Type Sorting: Automatically move files into subdirectories based on their extensions (e.g., documents, images, videos).
    • Date-Based Organization: Add an option to organize files by creation date into year/month folders.
    • User-Friendly CLI: Build intuitive commands and clear outputs for ease of use. This version maintains the core idea of organizing files efficiently while focusing on Go development and practical file management.


    Jenny Static Site Generator by adam.pickering

    Description

    For my personal site I have been using hugo. It works, but I am not satisfied: every time I want to make a change (which is infrequently) I have to read through the documentation again to understand how hugo works. I don't find the documentation easy to use, and the structure of the repository that hugo requires is unintuitive/more complex than what I need. So, I have decided to write my own simple static site generator in Go. It is named Jenny, after my wife.

    Goals

    • Pages can be written in markdown (which is automatically converted to HTML), but other file types are also allowed
    • Easy to understand and use
      • Intuitive, simple design
      • Clear documentation
      • Hot reloading
      • Binaries provided for download
    • Future maintenance is easy
      • Automated releases

    Resources

    https://github.com/adamkpickering/jenny


    terraform-provider-feilong by e_bischoff

    Project Description

    People need to test operating systems and applications on s390 platform.

    Installation from scratch solutions include:

    • just deploy and provision manually add-emoji (with the help of ftpboot script, if you are at SUSE)
    • use s3270 terminal emulation (used by openQA people?)
    • use LXC from IBM to start CP commands and analyze the results
    • use zPXE to do some PXE-alike booting (used by the orthos team?)
    • use tessia to install from scratch using autoyast
    • use libvirt for s390 to do some nested virtualization on some already deployed z/VM system
    • directly install a Linux kernel on a LPAR and use kvm + libvirt from there

    Deployment from image solutions include:

    • use ICIC web interface (openstack in disguise, contributed by IBM)
    • use ICIC from the openstack terraform provider (used by Rancher QA)
    • use zvm_ansible to control SMAPI
    • connect directly to SMAPI low-level socket interface

    IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.

    What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your system/z.

    Other Feilong-based solutions include:

    • make libvirt Feilong-aware
    • simply call Feilong from shell scripts with curl
    • use zvmconnector client python library from Feilong
    • use zthin part of Feilong to directly command SMAPI.

    Goal for Hackweek 23

    My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.

    My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.

    Goals for Hackweek 24

    Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!

    Let's add support for fiberchannel disks and multipath.

    Goals for Hackweek 25

    • Finish support for fiberchannel disks and multipath
    • Fix problems with registration on hashicorp providers registry


    iSCSI integration in Warewulf by ncuralli

    Description

    This Hackweek project aims to enhance Warewulf’s capabilities by adding iSCSI support, enabling both remote boot and flexible mounting of iSCSI devices within the filesystem. The project, which already handles NFS, DHCP, and iPXE, will be extended to offer iSCSI services as well, centralizing all necessary services for provisioning and booting cluster nodes.

    Goals

    • iSCSI Boot Option: Enable nodes to boot directly from iSCSI volumes
    • Mounting iSCSI Volumes within the Filesystem: Implement support for mounting iSCSI devices at various points within the filesystem

    Resources

    https://warewulf.org/

    Steps

    • add generic framework to handle remote ressource/filesystems to wwctl [ ]
    • add iSCSI handling to wwctl configure [ ]
    • add iSCSI to dracut files [ ]
    • test it [ ]


    A CLI for Harvester by mohamed.belgaied

    [comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API


    ddflare: (Dynamic)DNS management via Cloudflare API in Kubernetes by fgiudici

    Description

    ddflare is a project started a couple of weeks ago to provide DDNS management using v4 Cloudflare APIs: Cloudflare offers management via APIs and access tokens, so it is possible to register a domain and implement a DynDNS client without any other external service but their API.

    Since ddflare allows to set any IP to any domain name, one could manage multiple A and ALIAS domain records. Wouldn't be cool to allow full DNS control from the project and integrate it with your Kubernetes cluster?

    Goals

    Main goals are:

    1. add containerized image for ddflare
    2. extend ddflare to be able to add and remove DNS records (and not just update existing ones)
    3. add documentation, covering also a sample pod deployment for Kubernetes
    4. write a ddflare Kubernetes operator to enable domain management via Kubernetes resources (using kubebuilder)

    Available tasks and improvements tracked on ddflare github.

    Resources

    • https://github.com/fgiudici/ddflare
    • https://developers.cloudflare.com/api/
    • https://book.kubebuilder.io


    Metrics Server viewer for Kubernetes by bkampen

    This project is finished please visit the github repo below for the tool.

    Description

    Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.

    Goals

    • Learn more about metrics-server
    • Learn more about the inner workings of Kubernetes.
    • Learn more about Go

    Resources

    https://github.com/bvankampen/metrics-viewer


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Small healthcheck tool for Longhorn by mbrookhuis

    Project Description

    We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

    As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

    This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

    Goal for this Hackweek

    At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

    Overview

    This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

    • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

    • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

    • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

    If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

    The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

    The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

    Installation

    To install this project, perform the following steps:

    • Create the directory /opt/k8s-check

    mkdir /opt/k8s-check

    • Copy all the file to this directory and make the following changes:

    chmod +x k8s-check.py


    Extending KubeVirtBMC's capability by adding Redfish support by zchang

    Description

    In Hack Week 23, we delivered a project called KubeBMC (renamed to KubeVirtBMC now), which brings the good old-fashioned IPMI ways to manage virtual machines running on KubeVirt-powered clusters. This opens the possibility of integrating existing bare-metal provisioning solutions like Tinkerbell with virtualized environments. We even received an inquiry about transferring the project to the KubeVirt organization. So, a proposal was filed, which was accepted by the KubeVirt community, and the project was renamed after that. We have many tasks on our to-do list. Some of them are administrative tasks; some are feature-related. One of the most requested features is Redfish support.

    Goals

    Extend the capability of KubeVirtBMC by adding Redfish support. Currently, the virtbmc component only exposes IPMI endpoints. We need to implement another simulator to expose Redfish endpoints, as we did with the IPMI module. We aim at a basic set of functionalities:

    • Power management
    • Boot device selection
    • Virtual media mount (this one is not so basic add-emoji )

    Resources