Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.
Looking for hackers with the skills:
This project is part of:
Hack Week 24
Activity
Comments
-
about 1 month ago by agamez | Reply
For now, we already have some sessions during the HackWeek:
- Cáceres: Tue 12 Nov, 2024
- Córdoba: Tue 19 Nov, 2024
- Sevila: Thu 21 Nov, 2024 x2
- Sevila: Thu 22 Nov, 2024
- Córdoba: Tue 3 Dec, 2024
- Sevilla: Wed 3 Dec, 2024
- Cádiz: Wed 8 Jan, 2025
More to be planned (Mérida, Málaga)
Similar Projects
Capyboard, ESP32 Development Board for Education by emiler
Description
Capyboard is an ESP32 development board built to accept individual custom-made modules. The board is created primarily for use in education, where you want to focus on embedded programming instead of spending time with connecting cables and parts on a breadboard, as you would with Arduino and other such devices. The board is not limited only to education and it can be used to build, for instance, a very powerful internal meteo-station and so on.
I already have one initial prototype ready and tested. The next iteration addresses several issues the first prototype had. I am planning on finishing up the mainboard and one of the modules this week.
This project is also a part of my master's thesis.
Goals
- Finish testing of a new prototype
- Publish source files
- Documentation completion
- Finish writing thesis
Resources
- github.com/realcharmer/capyboard
- github.com/realcharmer/capyboard-starter
- github.com/realcharmer/capyboard-docs
- docs.capyboard.dev
Rancher/k8s Trouble-Maker by tonyhansen
Project Description
When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.
Goal for this Hackweek
Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting
Resources
https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up
A CLI for Harvester by mohamed.belgaied
[comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01
to my-vm-05
.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go
the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon
Description
Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.
Goals
- Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
- Provide an end to end example that creates and deploy a container from source code.
Resources
https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter
kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia
Description
kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.
Goals
- Seamless Multi-Cluster Cloning
- Clone Kubernetes resources across clusters/projects with one command.
- Simplifies management, reduces operational effort.
Resources
Rancher & Kubernetes Docs
- Rancher API, Cluster Management, Kubernetes client libraries.
Development Tools
- Kubectl plugin docs, Go programming resources.
Building and Installing the Plugin
- Set Environment Variables: Export the Rancher URL and API token:
export RANCHER_URL="https://rancher.example.com"
export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
- Build the Plugin: Compile the Go program:
go build -o kubectl-clone ./pkg/
- Install the Plugin:
Move the executable to a directory in your
PATH
:
mv kubectl-clone /usr/local/bin/
Ensure the file is executable:
chmod +x /usr/local/bin/kubectl-clone
- Verify the Plugin Installation: Test the plugin by running:
kubectl clone --help
You should see the usage information for the kubectl-clone
plugin.
Usage Examples
- Clone a Deployment from One Cluster to Another:
kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
- Clone a Service into Another Namespace and Modify Labels:
Install Uyuni on Kubernetes in cloud-native way by cbosdonnat
Description
For now installing Uyuni on Kubernetes requires running mgradm
on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.
Goals
Install Uyuni from Rancher UI.
Resources
mgradm
code: https://github.com/uyuni-project/uyuni-tools- Uyuni operator: https://github.com/cbosdo/uyuni-operator
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Improve Development Environment on Uyuni by mbussolotto
Description
Currently create a dev environment on Uyuni might be complicated. The steps are:
- add the correct repo
- download packages
- configure your IDE (checkstyle, format rules, sonarlint....)
- setup debug environment
- ...
The current doc can be improved: some information are hard to be find out, some others are completely missing.
Dev Container might solve this situation.
Goals
Uyuni development in no time:
- using VSCode:
- setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
- dev container should contains all dependencies
- setup debug environment
- implement a GitHub Workspace solution
- re-write documentation
Lots of pieces are already implemented: we need to connect them in a consistent solution.
Resources
- https://github.com/uyuni-project/uyuni/wiki
Port the classic browser game HackTheNet to PHP 8 by dgedon
Description
The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.
Goals
- Port the game to PHP 8 and MariaDB 11
- Create a container where the game server can simply be started/stopped
Resources
- https://github.com/nodeg/hackthenet