Project Description

As Generative AI is everywhere around, we want to research its possibilities, how it can help SUSE, its employees and customers. The initial idea is to build solution based on Amazon Bedrock, to integrate our asset management tools and to be able to query the data and get the answers using human-like text.

Goal for this Hackweek

Populate all available data from SUSE Asset management tools (integrate with Jira Insight, Racktables, CloudAccountMetadata, Cloudquery,...) into the foundational model (e.g. Amazon Titan). Then make the foundational model able to answer simple queries like how many VMs are running in PRG2 or who are the owners of EC2 instances of t2 family.

This is only one of the ideas for GenAI we have. Most probably we will try to cover also another scenarios. If you are interested or you have any other idea how to utilize foundational models, let us know.

Resources

  • https://aws.amazon.com/bedrock/
  • https://github.com/aws-samples/amazon-bedrock-workshop
  • Specifically for this hackweek was created AWS Account ITPE Gen IA Dev (047178302800) accessible via Okta - whoever is interested, please contact me (or raise JiraSD ticket to be added to CLZ: ITPE Gen IA Dev) and use region us-west-2 (don't mind the typo, heh).
  • we have booked AWS engineer, expert on Bedrock on 2023-11-06 (1-5pm CET, meeting link) - anyone interested can join

Keywords

AI, GenAI, GenerativeAI, AWS, Amazon Bedrock, Amazon Titan, Asset Management

Looking for hackers with the skills:

ai genai generativeai aws amazontitan assetmanagement bedrock

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: vadim joined this project.
  • about 1 year ago: ralwal joined this project.
  • about 1 year ago: rjagu joined this project.
  • about 1 year ago: rjagu left this project.
  • about 1 year ago: rjagu joined this project.
  • about 1 year ago: lthadeus liked this project.
  • over 1 year ago: ralwal liked this project.
  • over 1 year ago: mpiala started this project.
  • over 1 year ago: mpiala added keyword "bedrock" to this project.
  • over 1 year ago: mpiala removed keyword amazonbedrock from this project.
  • over 1 year ago: mpiala added keyword "assetmanagement" to this project.
  • over 1 year ago: mpiala added keyword "ai" to this project.
  • over 1 year ago: mpiala added keyword "genai" to this project.
  • over 1 year ago: mpiala added keyword "generativeai" to this project.
  • over 1 year ago: mpiala added keyword "aws" to this project.
  • over 1 year ago: mpiala added keyword "amazonbedrock" to this project.
  • over 1 year ago: mpiala added keyword "amazontitan" to this project.
  • over 1 year ago: mpiala originated this project.

  • Comments

    • mpiala
      about 1 year ago by mpiala | Reply

      slides from the AWS workshop: https://mysuse.sharepoint.com/:b:/s/suse-it-infra/EYUbSRf1y5NqAq9Owjh6cQB0ESOJnJRzx83P5d2EzTMA?e=j8miG1

    • mpiala
      about 1 year ago by mpiala | Reply

      and recording of the workshop: Gen AI with AWS-20231106_130308-Meeting Recording.mp4

    • vadim
      about 1 year ago by vadim | Reply

      @mpiala now that we all have some hands on experience with bedrock I suggest that you create a few workgroup sessions for tomorrow / Thursday and invite contributors. I'd split the work into three workstreams:

      1. Create infrastructure / pipelines that would deploy the project in a reproducible way
      2. Create a crawler that would parse the source data and populate a vector database (probably a lambda that can be triggered by cloudwatch)
      3. Create a backend that would query the vector DB, run inference and integrate with slack

      For vector DB we can use something off the shelf, like pinecone.io - later we can move it to Athena or something else.

    Similar Projects

    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo

    Description

    Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.

    Goals

    Develop an Elixir application via the Phoenix framework that:

    • Employs Retrieval Augmented Generation (RAG) techniques
    • Supports the integration and utilization of various Large Language Models (LLMs).
    • Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.

    Resources

    • https://elixir-lang.org/
    • https://www.phoenixframework.org/
    • https://github.com/elixir-nx/bumblebee
    • https://ollama.com/


    Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez

    Description

    Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.

    Goals

    • Explore Ollama
    • Test different models
    • Fine tuning
    • Explore possible integration in Uyuni

    Resources

    • https://ollama.com/
    • https://huggingface.co/
    • https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games