My current mail setup is mu4e and emacs based mail client included with the amazing mu mail indexer. mu works similar to notmuch but allows easy bidirectional operation with the original Maildir. Add mbsync (isync) to sync imap locally and msmtp and you have a full mail setup.

The idea is to create a fancy version of this setup using a browser based application. The architecture is similar to mu4e. Instead of mu4e talking to mu-server, a small backend written in go talks to mu-server. The backend serves a javascript application and provides an HTTP API to it. The app is written in Vue.js.

The current prototype can already display the subjects of the mail as you type in the textfield. It uses plain rest for now. A Websocket would allow for progress report (but it is so fast that has not been necessary until now). The backend implements the mu-server s-exp protocol and for now exposes the cmd:find operation.

Looking for hackers with the skills:

golang vuejs

This project is part of:

Hack Week 16

Activity

  • about 8 years ago: michals disliked this project.
  • about 8 years ago: michals liked this project.
  • about 8 years ago: jochenbreuer liked this project.
  • about 8 years ago: vitoravelino liked this project.
  • about 8 years ago: vrothberg liked this project.
  • almost 9 years ago: j_renner liked this project.
  • almost 9 years ago: hennevogel liked this project.
  • almost 9 years ago: dmacvicar added keyword "golang" to this project.
  • almost 9 years ago: dmacvicar added keyword "vuejs" to this project.
  • almost 9 years ago: dmacvicar started this project.
  • almost 9 years ago: dmacvicar originated this project.

  • Comments

    • vitoravelino
      about 8 years ago by vitoravelino | Reply

      @dmacvicar, is the prototype source hosted somewhere? If yes, is there a Getting Started in the README? I'd like to give it a try. :)

    Similar Projects

    Create a go module to wrap happy-compta.fr by cbosdonnat

    Description

    https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.

    Goals

    Write a go client module to be used as an API to programmatically manipulate the tool.

    Writing an example tool to load data from a CSV file would be good too.


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)


    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    Rewrite Distrobox in go (POC) by fabriziosestito

    Description

    Rewriting Distrobox in Go.

    Main benefits:

    • Easier to maintain and to test
    • Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)

    Goals

    • Build a minimal starting point with core commands
    • Keep the CLI interface compatible: existing users shouldn't notice any difference
    • Use a clean Go architecture with adapters for different container backends
    • Keep dependencies minimal and binary size small
    • Benchmark against the original shell script

    Resources

    • Upstream project: https://github.com/89luca89/distrobox/
    • Distrobox site: https://distrobox.it/
    • ArchWiki: https://wiki.archlinux.org/title/Distrobox


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    Liz - Prompt autocomplete by ftorchia

    Description

    Liz is the Rancher AI assistant for cluster operations.

    Goals

    We want to help users when sending new messages to Liz, by adding an autocomplete feature to complete their requests based on the context.

    Example:

    • User prompt: "Can you show me the list of p"
    • Autocomplete suggestion: "Can you show me the list of p...od in local cluster?"

    Example:

    • User prompt: "Show me the logs of #rancher-"
    • Chat console: It shows a drop-down widget, next to the # character, with the list of available pod names starting with "rancher-".

    Technical Overview

    1. The AI agent should expose a new ws/autocomplete endpoint to proxy autocomplete messages to the LLM.
    2. The UI extension should be able to display prompt suggestions and allow users to apply the autocomplete to the Prompt via keyboard shortcuts.

    Resources

    GitHub repository


    SUSE Virtualization (Harvester): VM Import UI flow by wombelix

    Description

    SUSE Virtualization (Harvester) has a vm-import-controller that allows migrating VMs from VMware and OpenStack, but users need to write manifest files and apply them with kubectl to use it. This project is about adding the missing UI pieces to the harvester-ui-extension, making VM Imports accessible without requiring Kubernetes and YAML knowledge.

    VMware and OpenStack admins aren't automatically familiar with Kubernetes and YAML. Implementing the UI part for the VM Import feature makes it easier to use and more accessible. The Harvester Enhancement Proposal (HEP) VM Migration controller included a UI flow implementation in its scope. Issue #2274 received multiple comments that an UI integration would be a nice addition, and issue #4663 was created to request the implementation but eventually stalled.

    Right now users need to manually create either VmwareSource or OpenstackSource resources, then write VirtualMachineImport manifests with network mappings and all the other configuration options. Users should be able to do that and track import status through the UI without writing YAML.

    Work during the Hack Week will be done in this fork in a branch called suse-hack-week-25, making progress publicly visible and open for contributions. When everything works out and the branch is in good shape, it will be submitted as a pull request to harvester-ui-extension to get it included in the next Harvester release.

    Testing will focus on VMware since that's what is available in the lab environment (SUSE Virtualization 1.6 single-node cluster, ESXi 8.0 standalone host). Given that this is about UI and surfacing what the vm-import-controller handles, the implementation should work for OpenStack imports as well.

    This project is also a personal challenge to learn vue.js and get familiar with Rancher Extensions development, since harvester-ui-extension is built on that framework.

    Goals

    • Learn Vue.js and Rancher Extensions fundamentals required to finish the project
    • Read and learn from other Rancher UI Extensions code, especially understanding the harvester-ui-extension code base
    • Understand what the vm-import-controller and its CRDs require, identify ready to use components in the Rancher UI Extension API that can be leveraged
    • Implement UI logic for creating and managing VmwareSource / OpenstackSource and VirtualMachineImport resources with all relevant configuration options and credentials
    • Implemnt UI elements to display VirtualMachineImport status and errors

    Resources

    HEP and related discussion

    SUSE Virtualization VM Import Documentation

    Rancher Extensions Documentation

    Rancher UI Plugin Examples

    Vue Router Essentials

    Vue Router API

    Vuex Documentation