Description

Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).

Goals

Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.

Resources

Repo: https://github.com/digitaltom/semantic-knowledge-search

Public instance: https://geeko.port0.org/

Results

Internal instance:

I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.

image

Looking for hackers with the skills:

ollama ai rails search

This project is part of:

Hack Week 24

Activity

  • 2 months ago: arharovets46 joined this project.
  • 2 months ago: arharovets46 liked this project.
  • 2 months ago: digitaltomm added keyword "ollama" to this project.
  • 2 months ago: digitaltomm added keyword "ai" to this project.
  • 2 months ago: digitaltomm added keyword "rails" to this project.
  • 2 months ago: digitaltomm added keyword "search" to this project.
  • 2 months ago: baldarn liked this project.
  • 2 months ago: PSuarezHernandez liked this project.
  • 2 months ago: skotov joined this project.
  • 3 months ago: hennevogel liked this project.
  • 3 months ago: digitaltomm started this project.
  • 3 months ago: moio liked this project.
  • 4 months ago: digitaltomm originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez

    Description

    Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.

    Goals

    • Explore Ollama
    • Test different models
    • Fine tuning
    • Explore possible integration in Uyuni

    Resources

    • https://ollama.com/
    • https://huggingface.co/
    • https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/


    Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo

    Description

    Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.

    Goals

    Develop an Elixir application via the Phoenix framework that:

    • Employs Retrieval Augmented Generation (RAG) techniques
    • Supports the integration and utilization of various Large Language Models (LLMs).
    • Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.

    Resources

    • https://elixir-lang.org/
    • https://www.phoenixframework.org/
    • https://github.com/elixir-nx/bumblebee
    • https://ollama.com/


    Gen-AI chatbots and test-automation of generated responses by mdati

    Description

    Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.

    Try to define basic guidelines and requirements for quality test automation of AI-generated responses.

    First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.

    Goals

    • Identify criteria and measuring scales for assessment of a text content.
    • Define quality of an answer/text based on defined criteria .
    • Identify some knowledge sectors and a proper list of problems/questions per sector.
    • Manually run query session and apply evaluation criteria to answers.
    • Draft requirements for test automation of AI answers.

    Resources

    • Announcement of SUSE-AI for Hack Week in Slack
    • Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.

    Notes

    • Foundation models (FMs):
      are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.

    • Large language models (LLMs):
      are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
      LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.

    Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
    An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
    We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    Research how LLMs could help to Linux developers and/or users by anicka

    Description

    Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.

    Goals

    • Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
    • Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
    • Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
    • Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
    • Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.

    Resources

    • Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
    • Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
    • Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
    • Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
    • Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
    • Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
    • Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Recipes catalog and calculator in Rails 8 by gfilippetti

    My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.

    TO DO

    • Index page
    • Product page
    • Admin area -- Supplies calculator based on orders -- Orders notification
    • Authentication
    • Payment
    • Deployment

    Day 1

    As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.

    Day 2

    Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.

    Hackweek 24

    For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.

    Day 1