Project Description

Dashboard to aggregate publicly available open source date and transform, analyse, forecast factors affecting water conflicts.

Full disclosure: This project was initially done as part of my University course - Data Systems Project. It was presented to TNO (Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek) - Military division. Reason I took this project was it was exciting ML/AI POC for me.

Also believed this would actually help prevent conflicts and provide aid as oppose to somehow use it maliciously. This project is 2 years old. TNO did not provide any of their data or expertise and do not own this project.

Current state:

FE: React BE: Python / Flask

  • Project is more than 1.5 years old.
  • UI have quite alot of hardcoded data.
  • There are some buggy UI issues as well.
  • Backend could be broken

Goal for this Hackweek

github (Private): https://github.com/Shavindra/TNO

I like to keep things very simple and not overdo anything.

  1. Update packages
  2. Fix UI bugs.
  3. Update Python backend

Then work one of the following

  1. Integrate some data sources properly.
  2. Least 1/2 API endpoints working on a basic level.
  3. Any other suggestions?

Resources

https://www.wri.org/insights/we-predicted-where-violent-conflicts-will-occur-2020-water-often-factor

This project is part of:

Hack Week 21

Activity

  • over 3 years ago: sfonseka started this project.
  • over 3 years ago: sfonseka added keyword "machinelearning" to this project.
  • over 3 years ago: sfonseka added keyword "artificial-intelligence" to this project.
  • over 3 years ago: sfonseka added keyword "water" to this project.
  • over 3 years ago: sfonseka added keyword "conflicts" to this project.
  • over 3 years ago: sfonseka added keyword "dashboard" to this project.
  • over 3 years ago: sfonseka added keyword "reactjs" to this project.
  • over 3 years ago: sfonseka added keyword "react" to this project.
  • over 3 years ago: sfonseka added keyword "ai" to this project.
  • over 3 years ago: sfonseka originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources