The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

  • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
  • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
  • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

The Problem: Testing Overhead

Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

The Solution: AI-Driven Automation

This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

  1. Automatically generate new unit tests as code is developed.
  2. Intelligently correct and update existing unit tests when the application code changes.

By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

Goals

  • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
  • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
  • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

Contribution & Resources

We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

If you want to dive deep into AI for software quality, please reach out and join the effort!

  • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
  • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

Interesting Links

Looking for hackers with the skills:

agama ai rust typescript react

This project is part of:

Hack Week 25

Activity

  • about 2 hours ago: joseivanlopez added keyword "rust" to this project.
  • about 2 hours ago: joseivanlopez added keyword "typescript" to this project.
  • about 2 hours ago: joseivanlopez added keyword "react" to this project.
  • about 2 hours ago: joseivanlopez joined this project.
  • about 2 hours ago: joseivanlopez added keyword "agama" to this project.
  • about 2 hours ago: joseivanlopez added keyword "ai" to this project.
  • about 5 hours ago: ygutierrez liked this project.
  • about 7 hours ago: dgdavid liked this project.
  • about 8 hours ago: ancorgs started this project.
  • about 8 hours ago: ancorgs liked this project.
  • about 9 hours ago: joseivanlopez originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    https://docs.google.com/document/d/1HbAvgrg8T3pd1FIx74nEfCObCljpO77zz5In_Jpw4as/edit?usp=sharing## Description


    MCP Server for SCC by digitaltomm

    Description

    Provide an MCP Server implementation for customers to access data on scc.suse.com via MCP protocol. Similar to the organization APIs, this can expose to customers data about their subscriptions, orders, systems and products. Authentication should be done by organization credentials, similar to what needs to be provided to RMT/MLM. Customers can connect to the SCC MCP server from their own MCP-compatible client and Large Language Model (LLM), so no third party is involved.

    Schema

    Goals

    We want to demonstrate a proof of concept to connect to the SCC MCP server with any AI agent, like gemini-cli, copilot or Claude desktop. Enabling the user to ask questions regarding their SCC inventory, like "When do I need to re-new my SLES subscription", "Do I have active systems running on unsupported operating systems?".

    Milestones

    [ ] Basic MCP API setup
    [ ] MCP endpoints
      [ ] Products / Repositories
      [ ] Subscriptions / Orders 
      [ ] Systems
    [ ] Document usage with VSCode Copilot, Claude Desktop, Gemini CLI
    

    Example

    Resources


    Uyuni Health-check Grafana Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources


    Update M2Crypto by mcepl

    There are couple of projects I work on, which need my attention and putting them to shape:

    Goal for this Hackweek

    • Put M2Crypto into better shape (most issues closed, all pull requests processed)
    • More fun to learn jujutsu
    • Play more with Gemini, how much it help (or not).
    • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.


    Modal editor in Rust by acervesato

    Description

    To write a modal editor in Rust inspired by vim and having the following features:

    • vim basic motion commands + insert/visual mode
    • multiple buffers with tabs
    • status bar

    It should be written for terminal only using ratatui library and crossterm.

    Goals

    The goal is to start with a functional prototype that can be extended in the future with the following features (in random order):

    • treesitter support + styles
    • fuzzy finder
    • grep finder
    • integration with git
    • tree viewer
    • internal terminal floating window
    • mailing list workflow integration

    Resources


    RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso

    Description

    The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.

    We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.

    This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.

    The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.

    Goals

    The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.

    Key goals for the week:

    1. Analyze & Identify: Dive into the SUSE/rmt Ruby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions).
    2. Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
    3. Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like rb-sys or magnus.
    4. Benchmark: Create a benchmarking script (e.g., using k6, ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients.
    5. Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.

    Resources

    • RMT Source Code (Ruby):
      • https://github.com/SUSE/rmt
    • RMT Documentation:
      • https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
    • Tooling & Stacks:
      • RMT/Ruby development environment (for running the base RMT)
      • Rust development environment (rustup, cargo)
    • Potential Integration Libraries:
      • rb-sys: https://github.com/oxidize-rb/rb-sys
      • Magnus: https://github.com/matsadler/magnus
    • Benchmarking Tools:
      • k6 (https://k6.io/)
      • ab (ApacheBench)


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakynes.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources