Description

Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).

Goals

Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.

Resources

Repo: https://github.com/digitaltom/semantic-knowledge-search

Public instance: https://geeko.port0.org/

Results

Internal instance:

I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.

image

Looking for hackers with the skills:

ollama ai rails search

This project is part of:

Hack Week 24

Activity

  • 8 months ago: doreilly liked this project.
  • 11 months ago: arharovets46 joined this project.
  • 11 months ago: arharovets46 liked this project.
  • 11 months ago: digitaltomm added keyword "ollama" to this project.
  • 11 months ago: digitaltomm added keyword "ai" to this project.
  • 11 months ago: digitaltomm added keyword "rails" to this project.
  • 11 months ago: digitaltomm added keyword "search" to this project.
  • 11 months ago: baldarn liked this project.
  • 11 months ago: PSuarezHernandez liked this project.
  • 11 months ago: skotov joined this project.
  • 11 months ago: hennevogel liked this project.
  • 11 months ago: digitaltomm started this project.
  • 11 months ago: moio liked this project.
  • about 1 year ago: digitaltomm originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server


    Recipes catalog and calculator in Rails 8 by gfilippetti

    My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.

    TO DO

    • Index page
    • Product page
    • Admin area -- Supplies calculator based on orders -- Orders notification
    • Authentication
    • Payment
    • Deployment

    Day 1

    As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.

    Day 2

    Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.

    Hackweek 24

    For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.

    Day 1