Description

A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

Goals

Allow PyTorch users to save and load machine learning models in OCI registries.

Resources

Looking for hackers with the skills:

ai mlops pytorch oci cloud

This project is part of:

Hack Week 24

Activity

  • 29 days ago: horon liked this project.
  • about 1 month ago: jguilhermevanz started this project.
  • about 1 month ago: jguilhermevanz added keyword "ai" to this project.
  • about 1 month ago: jguilhermevanz added keyword "mlops" to this project.
  • about 1 month ago: jguilhermevanz added keyword "pytorch" to this project.
  • about 1 month ago: jguilhermevanz added keyword "oci" to this project.
  • about 1 month ago: jguilhermevanz added keyword "cloud" to this project.
  • about 1 month ago: jguilhermevanz originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Use AI tools to convert legacy perl scripts to bash by nadvornik

    Description

    Use AI tools to convert legacy perl scripts to bash

    Goals

    Uyuni project contains legacy perl scripts used for setup. The perl dependency could be removed, to reduce the container size. The goal of this project is to research use of AI tools for this task.

    Resources

    Aider

    Results:

    Aider is not the right tool for this. It works ok for small changes, but not for complete rewrite from one language to another.

    I got better results with direct API use from script.


    Gen-AI chatbots and test-automation of generated responses by mdati

    Description

    Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.

    Try to define basic guidelines and requirements for quality test automation of AI-generated responses.

    First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.

    Goals

    • Identify criteria and measuring scales for assessment of a text content.
    • Define quality of an answer/text based on defined criteria .
    • Identify some knowledge sectors and a proper list of problems/questions per sector.
    • Manually run query session and apply evaluation criteria to answers.
    • Draft requirements for test automation of AI answers.

    Resources

    • Announcement of SUSE-AI for Hack Week in Slack
    • Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.

    Notes

    • Foundation models (FMs):
      are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.

    • Large language models (LLMs):
      are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
      LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.

    Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
    An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
    We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    AI for product management by a_jaeger

    Description

    Learn about AI and how it can help myself

    What are the jobs that a PM does where AI can help - and how?

    Goals

    • Investigate how AI can help with different tasks
    • Check out different AI tools, which one is best for which job
    • Summarize learning

    Resources

    • Reading some blog posts by PMs that looked into it
    • Popular and less popular AI tools

    Work is done SUSE internally at https://confluence.suse.com/display/~a_jaeger/Hackweek+25+-+AI+for+a+PM and subpages.


    Research how LLMs could help to Linux developers and/or users by anicka

    Description

    Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.

    Goals

    • Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
    • Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
    • Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
    • Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
    • Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.

    Resources

    • Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
    • Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
    • Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
    • Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
    • Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
    • Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
    • Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.


    Mortgage Plan Analyzer by RMestre

    https://github.com/rjpmestre/mortgage-plan-analyzer

    Project Description

    Many people face challenges when trying to renegotiate their mortgages with different banks. They receive offers from multiple lenders and struggle to compare them effectively. Each proposal may have slightly different terms and data presentation, making it hard to make informed decisions. Additionally, understanding the impact of various taxes and variables can be complex. The Mortgage Plan Analyzer project aims to address these issues.

    Project Overview:

    The Mortgage Plan Analyzer is a web-based tool built using PHP, Laravel, Livewire, and AdminLTE/bootstrap. It provides a user-friendly platform for individuals to input basic specifications about their mortgage, adjust taxes and variables, and obtain short-term projections for each proposal. Users can also compare multiple mortgage offers side by side, enabling them to make informed decisions about their mortgage renegotiation.

    Why Start This Project:

    I found myself in this position and most tools I found around are either for marketing/selling purposes or not flexible enough. As i was starting getting lost in a jungle of spreadsheets i thought I could just create a tool to help me and others that may be experiencing the same struggles to provide clarity and transparency in the decision-making process.

    Hackweek 25 ideas (to refine still :) )

    • Euribor Trends in Projections
    • - Use historical Euribor data to model optimistic and pessimistic scenarios for variable-rate loans.
    • Use the annual summaries (installments, amortizations, etc) and run some analysis to highlight key differences, like short-term savings vs. long-term costs
    • Financial plan can be hard/boring to follow. Create a simple viewing mode that summarizes monthly values and their annual sums.

    Hackweek 24 update

    • Improved summaries graphs by adding:
    • - Line graph;
    • - Accumulated line graph;
    • - Set the range to short/mid/long term;
    • - Highlight best simulation and value per year;
    • Improve the general behaviour of the forms:
    • - Simulations name setting;
    • - Cloning simulations;
    • - Adjust update timing on input changes;
    • Show/Hide big tables;
    • Support multi languages (added english);
    • Added examples;
    • Adjustments to fonts and sizes;
    • Fixed loading screen;
    • Dependencies adjustments;

    Hackweek 23 initial release

    • Developed a base site that:
    • - Allows adding up to 3 simulations;
    • - Create financial plans;
    • - Simulations comparison graph for the first 4 years;
    • Created Github project @ https://github.com/rjpmestre/mortgage-plan-analyzer ;
    • Launched a demo instance using Oracle Cloud Free Tier currently @ http://138.3.251.182/

    Resources

    • Banco de Portugal: Main simulator all portuguese banks have to follow ( https://clientebancario.bportugal.pt/credito-habitacao )
    • Laravel: A PHP web application framework for building robust and scalable applications. ( https://laravel.com/ )
    • Livewire: A Laravel library for building dynamic interfaces without writing JavaScript. ( https://livewire.laravel.com/ )
    • AdminLTE: A responsive admin dashboard template for creating a visually appealing interface. ( https://adminlte.io/ )