There are couple of projects I work on, which need my attention and putting them to shape:

Goal for this Hackweek

  • Put M2Crypto into better shape (most issues closed, all pull requests processed)
  • More fun to learn jujutsu
  • Play more with Gemini, how much it help (or not).
  • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.

Looking for hackers with the skills:

vim python openssl jujutsu ai

This project is part of:

Hack Week 20 Hack Week 22 Hack Week 25

Activity

  • 24 days ago: vizhestkov liked this project.
  • 30 days ago: mcepl added keyword "ai" to this project.
  • 30 days ago: mcepl added keyword "jujutsu" to this project.
  • 30 days ago: mcepl removed keyword neovim from this project.
  • 30 days ago: mcepl removed keyword lua from this project.
  • almost 3 years ago: asmorodskyi joined this project.
  • almost 3 years ago: msaquib liked this project.
  • almost 3 years ago: msaquib joined this project.
  • over 4 years ago: mstrigl liked this project.
  • over 4 years ago: kstreitova liked this project.
  • over 4 years ago: mcepl started this project.
  • over 4 years ago: mcepl added keyword "vim" to this project.
  • over 4 years ago: mcepl added keyword "neovim" to this project.
  • over 4 years ago: mcepl added keyword "lua" to this project.
  • over 4 years ago: mcepl added keyword "python" to this project.
  • over 4 years ago: mcepl added keyword "openssl" to this project.
  • over 4 years ago: mcepl originated this project.

  • Comments

    • mcepl
      almost 3 years ago by mcepl | Reply

      • rope-based LSP server exists https://github.com/python-rope/pylsp-rope
      • spellsitter as a standalone hunspell-based spellchecker for nvim has been abandoned

    • asmorodskyi
      almost 3 years ago by asmorodskyi | Reply

      I have mid-level python knowledge and basic OBS knowledge and close to zero knowledge about encryption algorithms . I can try to fix some python-specific problem within package or try to do some packaging task in OBS . Can you recommend me something certain ?

      • mcepl
        almost 3 years ago by mcepl | Reply

        Yeah, it is too late now, but many of https://gitlab.com/m2crypto/m2crypto/-/issues don’t require much encryption knowledge.

    • mcepl
      almost 3 years ago by mcepl | Reply

      There was actually some progress on this project: master branch now passes the test suite through on all platforms (including Windows! hint: I don’t have one ;)), and the release of the next milestone is blocked just by https://gitlab.com/m2crypto/m2crypto/-/merge_requests/234 not passing through one test. If anybody knows anything about HTTP Transfer-Encoding: chunked and she is willing to help, I am all ears!

    Similar Projects

    Mail client with mailing list workflow support in Rust by acervesato

    Description

    To create a mail user interface using Rust programming language, supporting mailing list patches workflow. I know, aerc is already there, but I would like to create something simpler, without integrated protocols. Just a plain user interface that is using some crates to read and create emails which are fetched and sent via external tools.

    I already know Rust, but not the async support, which is needed in this case in order to handle events inside the mail folder and to send notifications.

    Goals

    • simple user interface in the style of aerc, with some vim keybindings for motions and search
    • automatic run of external tools (like mbsync) for checking emails
    • automatic run commands for notifications
    • apply patch set from ML
    • tree-sitter support with styles

    Resources

    • ratatui: user interface (https://ratatui.rs/)
    • notify: folder watcher (https://docs.rs/notify/latest/notify/)
    • mail-parser: parser for emails (https://crates.io/crates/mail-parser)
    • mail-builder: create emails in proper format (https://docs.rs/mail-builder/latest/mail_builder/)
    • gitpatch: ML support (https://crates.io/crates/gitpatch)
    • tree-sitter-rust: support for mail format (https://crates.io/crates/tree-sitter)


    VimGolf Station by emiler

    Description

    VimGolf is a challenge game where the goal is to edit a given piece of text into a desired final form using as few keystrokes as possible in Vim.

    Some time ago, I built a rough portable station using a Raspberry Pi and a spare monitor. It was initially used to play VimGolf at the office and later repurposed for publicity at several events. This project aims to create a more robust version of that station and provide the necessary scripts and Ansible playbooks to make configuring your own VimGolf station easy.

    Goals

    • Refactor old existing scripts
    • Implement challenge selecion
    • Load external configuration files
    • Create Ansible playbooks
    • Publish on GitHub

    Resources

    • https://www.vimgolf.com/
    • https://github.com/dstein64/vimgolf
    • https://github.com/igrigorik/vimgolf


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Help Create A Chat Control Resistant Turnkey Chatmail/Deltachat Relay Stack - Rootless Podman Compose, OpenSUSE BCI, Hardened, & SELinux by 3nd5h1771fy

    Description

    The Mission: Decentralized & Sovereign Messaging

    FYI: If you have never heard of "Chatmail", you can visit their site here, but simply put it can be thought of as the underlying protocol/platform decentralized messengers like DeltaChat use for their communications. Do not confuse it with the honeypot looking non-opensource paid for prodect with better seo that directs you to chatmailsecure(dot)com

    In an era of increasing centralized surveillance by unaccountable bad actors (aka BigTech), "Chat Control," and the erosion of digital privacy, the need for sovereign communication infrastructure is critical. Chatmail is a pioneering initiative that bridges the gap between classic email and modern instant messaging, offering metadata-minimized, end-to-end encrypted (E2EE) communication that is interoperable and open.

    However, unless you are a seasoned sysadmin, the current recommended deployment method of a Chatmail relay is rigid, fragile, difficult to properly secure, and effectively takes over the entire host the "relay" is deployed on.

    Why This Matters

    A simple, host agnostic, reproducible deployment lowers the entry cost for anyone wanting to run a privacy‑preserving, decentralized messaging relay. In an era of perpetually resurrected chat‑control legislation threats, EU digital‑sovereignty drives, and many dangers of using big‑tech messaging platforms (Apple iMessage, WhatsApp, FB Messenger, Instagram, SMS, Google Messages, etc...) for any type of communication, providing an easy‑to‑use alternative empowers:

    • Censorship resistance - No single entity controls the relay; operators can spin up new nodes quickly.
    • Surveillance mitigation - End‑to‑end OpenPGP encryption ensures relay operators never see plaintext.
    • Digital sovereignty - Communities can host their own infrastructure under local jurisdiction, aligning with national data‑policy goals.

    By turning the Chatmail relay into a plug‑and‑play container stack, we enable broader adoption, foster a resilient messaging fabric, and give developers, activists, and hobbyists a concrete tool to defend privacy online.

    Goals

    As I indicated earlier, this project aims to drastically simplify the deployment of Chatmail relay. By converting this architecture into a portable, containerized stack using Podman and OpenSUSE base container images, we can allow anyone to deploy their own censorship-resistant, privacy-preserving communications node in minutes.

    Our goal for Hack Week: package every component into containers built on openSUSE/MicroOS base images, initially orchestrated with a single container-compose.yml (podman-compose compatible). The stack will:

    • Run on any host that supports Podman (including optimizations and enhancements for SELinux‑enabled systems).
    • Allow network decoupling by refactoring configurations to move from file-system constrained Unix sockets to internal TCP networking, allowing containers achieve stricter isolation.
    • Utilize Enhanced Security with SELinux by using purpose built utilities such as udica we can quickly generate custom SELinux policies for the container stack, ensuring strict confinement superior to standard/typical Docker deployments.
    • Allow the use of bind or remote mounted volumes for shared data (/var/vmail, DKIM keys, TLS certs, etc.).
    • Replace the local DNS server requirement with a remote DNS‑provider API for DKIM/TXT record publishing.

    By delivering a turnkey, host agnostic, reproducible deployment, we lower the barrier for individuals and small communities to launch their own chatmail relays, fostering a decentralized, censorship‑resistant messaging ecosystem that can serve DeltaChat users and/or future services adopting this protocol

    Resources


    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)


    Bring to Cockpit + System Roles capabilities from YAST by miguelpc

    Bring to Cockpit + System Roles features from YAST

    Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.

    Goals

    The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.

    Resources

    A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit

    Linux System Roles:

    First meeting Hackweek catchup


    Improvements to osc (especially with regards to the Git workflow) by mcepl

    Description

    There is plenty of hacking on osc, where we could spent some fun time. I would like to see a solution for https://github.com/openSUSE/osc/issues/2006 (which is sufficiently non-serious, that it could be part of HackWeek project).


    Hackweek 25 from openSSL office in Brno, Czechia by lkocman

    Description

    Join South Moravian colleagues, Austrian friends, and local community members for Hackweek 25 at the openSSL corporation office in Brno, Czechia. This will be a relaxed and enjoyable in-person gathering where we can work on our Hackweek projects side by side, share ideas, help each other, and simply enjoy the atmosphere of hacking together for a week.

    Food, snacks, coffee will be available to keep everyone energized and happy throughout the week. We'd like to throw a small party on Tuesday.

    Goals

    • Bring together SUSE employees and community members from the South Moravian region and nearby Austria.
    • Create a friendly space for collaboration and creativity during Hackweek 25.
    • Support each other’s projects, exchange knowledge, and experiment freely.
    • Strengthen local connections and enjoy a refreshing break from remote work.

    Resources

    Report from Grand openning of the office

    Photos on google photos


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    Background Coding Agent by mmanno

    Description

    I had only bad experiences with AI one-shots. However, monitoring agent work closely and interfering often did result in productivity gains.

    Now, other companies are using agents in pipelines. That makes sense to me, just like CI, we want to offload work to pipelines: Our engineering teams are consistently slowed down by "toil": low-impact, repetitive maintenance tasks. A simple linter rule change, a dependency bump, rebasing patch-sets on top of newer releases or API deprecation requires dozens of manual PRs, draining time from feature development.

    So far we have been writing deterministic, script-based automation for these tasks. And it turns out to be a common trap. These scripts are brittle, complex, and become a massive maintenance burden themselves.

    Can we make prompts and workflows smart enough to succeed at background coding?

    Goals

    We will build a platform that allows engineers to execute complex code transformations using prompts.

    By automating this toil, we accelerate large-scale migrations and allow teams to focus on high-value work.

    Our platform will consist of three main components:

    • "Change" Definition: Engineers will define a transformation as a simple, declarative manifest:
      • The target repositories.
      • A wrapper to run a "coding agent", e.g., "gemini-cli".
      • The task as a natural language prompt.
    • "Change" Management Service: A central service that orchestrates the jobs. It will receive Change definitions and be responsible for the job lifecycle.
    • Execution Runners: We could use existing sandboxed CI runners (like GitHub/GitLab runners) to execute each job or spawn a container.

    MVP

    • Define the Change manifest format.
    • Build the core Management Service that can accept and queue a Change.
    • Connect management service and runners, dynamically dispatch jobs to runners.
    • Create a basic runner script that can run a hard-coded prompt against a test repo and open a PR.

    Stretch Goals:

    • Multi-layered approach, Workflow Agents trigger Coding Agents:
      1. Workflow Agent: Gather information about the task interactively from the user.
      2. Coding Agent: Once the interactive agent has refined the task into a clear prompt, it hands this prompt off to the "coding agent." This background agent is responsible for executing the task and producing the actual pull request.
    • Use MCP:
      1. Workflow Agent gathers context information from Slack, Github, etc.
      2. Workflow Agent triggers a Coding Agent.
    • Create a "Standard Task" library with reliable prompts.
      1. Rebasing rancher-monitoring to a new version of kube-prom-stack
      2. Update charts to use new images
      3. Apply changes to comply with a new linter
      4. Bump complex Go dependencies, like k8s modules
      5. Backport pull requests to other branches
    • Add “review agents” that review the generated PR.

    See also