Looking for hackers with the skills:

kernel aarch64 mainlining phones soc qualcomm exynos mediatek

This project is part of:

Hack Week 24

Activity

  • about 1 month ago: michals liked this project.
  • about 1 month ago: epaolantonio liked this project.
  • about 1 month ago: pvorel added keyword "mediatek" to this project.
  • about 1 month ago: pvorel added keyword "exynos" to this project.
  • about 1 month ago: pvorel added keyword "kernel" to this project.
  • about 1 month ago: pvorel added keyword "aarch64" to this project.
  • about 1 month ago: pvorel added keyword "mainlining" to this project.
  • about 1 month ago: pvorel added keyword "phones" to this project.
  • about 1 month ago: pvorel added keyword "soc" to this project.
  • about 1 month ago: pvorel added keyword "qualcomm" to this project.
  • about 1 month ago: pvorel originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v


    Contributing to Linux Kernel security by pperego

    Description

    A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.

    I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.

    I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller

    Goals

    1. Fix at least 2 security bugs
    2. Create the fuzzing lab and having it running

    The story so far

    • Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
    • Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
    • Day 3: Working on trivial changes after I read this blog post: https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence with the patch preparation and submit process yet.
      • First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
      • Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
    • Day 4: Triaging more issues found by Coverity.
      • The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
      • Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
    • Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
    • Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.

      I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.

    The patches

    1


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    Investigate non-booting Forlinx OKMX8MX-C board (aarch64) by a_faerber

    Description

    In the context of a SUSE customer inquiry last year, a Forlinx OKMX8MX-C arm64 board had been relayed to me from China that a customer was not successful booting SUSE Linux Micro on. Typically this happens when the vendor's bootloader (e.g., U-Boot) is not configured properly (e.g., U-Boot's distro boot) to be compliant with Arm SystemReady Devicetree (formerly IR) band. Unfortunately I could not immediately get it to emit any output, to even diagnose why it wasn't working. There was no public documentation on the vendor's website to even confirm I was checking the right UARTs.

    Earlier this year (2024) I happened to meet the ODM/OEM, Forlinx, at Embedded World 2024 in Nuremberg and again the Monday before Hackweek 24 at Electronica 2024 in Munich. The big puzzle was that the PCB print "OKMX8MX-C" does not match any current Forlinx product, there being OKMX8MM-C and OKMX8MP-C products with the Mini and Plus variants of NXP i.MX 8M family instead. One suggestion from Forlinx staff was to double-check the DIP switches on the board for boot mode selection.

    Goals

    Double-check the board name and investigate further what may be wrong with this board.

    Resources

    none

    Progress

    • The board name is indeed as spelled above, not matching any product on forlinx.net.
    • The DIP switches were set to boot from microSD.
    • Changing the DIP switches to eMMC boot did result in UART1 RS-232 output! (although at times garbled with the cable supplied and USB adapter used)
    • As feared, it did not automatically load our GRUB from USB.
    • Booting our GRUB manually from USB (via eMMC U-Boot commands fatload+bootefi) was unsuccessful, with partially Chinese error messages.
    • This confirmed the initial suspicion, already shared with Forlinx at Embedded World 2024, that the Forlinx System-on-Module's boot firmware was not Arm SystemReady Devicetree compliant and that a firmware update would be necessary to remedy that.
    • The microSD card turned out not to contain a bootable image but to only include Chinese-language board documentation (dated 20220507) and BSP files. They used a diverging name of OKMX8MQ-C.