Project Description
The wasm ecosystem is becoming more mature and feature rich. With this, I'd like to allow developers to run their code in wasm without needing to know how to set up their tooling or build the binary. Because of this, I think it would be interesting to extend cloud native buildpacks so you can build wasm-oci images in any of the platforms that support buildpacks.
Currently, there is no work being done on this other than that I've done some limited research and opened up a ticket upstream (https://github.com/buildpacks/lifecycle/issues/820)
Goal for this Hackweek
By the end of the week, I'd like to either have a POC of a builder image using the forked cloud native lifecycle or have some areas of research to take forward.
Resources
Main repo to fork and work on (then ask to merge back upstream): https://github.com/buildpacks/lifecycle Wasm image spec: https://github.com/solo-io/wasm/blob/master/spec/README.md Buildpack builder that may come in useful: https://github.com/agracey/metabuildpack
No Hackers yet
Looking for hackers with the skills:
This project is part of:
Hack Week 21
Activity
Comments
Be the first to comment!
Similar Projects
FamilyTrip Planner: A Personalized Travel Planning Platform for Families by pherranz
Description
FamilyTrip Planner is an innovative travel planning application designed to optimize travel experiences for families with children. By integrating APIs for flights, accommodations, and local activities, the app generates complete itineraries tailored to each family’s unique interests and needs. Recommendations are based on customizable parameters such as destination, trip duration, children’s ages, and personal preferences. FamilyTrip Planner not only simplifies the travel planning process but also offers a comprehensive, personalized experience for families.
Goals
This project aims to: - Create a user-friendly platform that assists families in planning complete trips, from flight and accommodation options to recommended family-friendly activities. - Provide intelligent, personalized travel itineraries using artificial intelligence to enhance travel enjoyment and minimize time and cost. - Serve as an educational project for exploring Go programming and artificial intelligence, with the goal of building proficiency in both.
Resources
To develop FamilyTrip Planner, the project will leverage: - APIs such as Skyscanner, Google Places, and TripAdvisor to source real-time information on flights, accommodations, and activities. - Go programming language to manage data integration, API connections, and backend development. - Basic machine learning libraries to implement AI-driven itinerary suggestions tailored to family needs and preferences.
Contribute to terraform-provider-libvirt by pinvernizzi
Description
The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.
It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.
If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.
Goals
- Get more familiar with Terraform provider development and libvirt bindings in Go
- Solve some issues and/or implement some features
- Get in touch with the community around the project
Resources
- CONTRIBUTING readme
- Go libvirt library in use by the project
- Terraform plugin development
- "Good first issue" list
WebUI for your data by avicenzi
A single place to view every bit of data you have.
Problem
You have too much data and you are a data hoarder.
- Family photos and videos.
- Lots of eBooks, TV Shows, Movies, and else.
- Boxes full of papers (taxes, invoices, IDs, certificates, exams, and else).
- Bank account statements (multiple currencies, countries, and people).
Maybe you have some data on S3, some on your NAS, and some on your local PC.
- How do you get it all together?
- How do you link a bank transaction to a product invoice?
- How to tag any object type and create a collection out of it (mix videos, photos, PDFs, transactions)?
- How to store this? file/folder structure does not work, everything is linked together
Project Description
The idea is a place where you can throw all your data, photos, videos, documents, binaries, and else.
Create photo albums, document collections, add tags across multiple file-formats, link content, and else.
The UI should be easy to use, where the data is not important for now (could be all S3 or local drive).
Similar proposals
The closest I found so far is https://perkeep.org/, but this is not what I'm looking for.
Goal for this Hackweek
Create a web UI, in Svelte ideally, perhaps React.
It should be able to show photos and videos at least.
Resources
None so far, this is just an idea.
Cluster API Provider for Harvester by rcase
Project Description
The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.
The project has been bootstrapped in HackWeek 23, and its code is available here.
Work done in HackWeek 2023
- Have a early working version of the provider available on Rancher Sandbox : *DONE *
- Demonstrated the created cluster can be imported using Rancher Turtles: DONE
- Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo
Goals for HackWeek 2024
- Add support for ClusterClass
- Add e2e testing
- Add more Unit Tests
- Improve Status Conditions to reflect current state of Infrastructure
- Improve CI (some bugs for release creation)
- Testing with newer Harvester version (v1.3.X and v1.4.X)
- Due to the length and complexity of the templates, maybe package some of them as Helm Charts.
- Other improvement suggestions are welcome!
DONE in HackWeek 24:
- Add more Unit Tests
- Improve Status Conditions for some phases
- Add cloud provider config generation
- Testing with Harvester v1.3.2
- Template improvements
- Issues creation
Thanks to @isim and Dominic Giebert for their contributions!
Resources
Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.
This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:
- Cluster infrastructure provider contract
- Machine infrastructure provider contract
- Provider implementers guide
Metrics Server viewer for Kubernetes by bkampen
This project is finished please visit the github repo below for the tool.
Description
Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.
Goals
- Learn more about metrics-server
- Learn more about the inner workings of Kubernetes.
- Learn more about Go
Resources
https://github.com/bvankampen/metrics-viewer
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
toptop - a top clone written in Go by dshah
Description
toptop
is a clone of Linux's top
CLI tool, but written in Go.
Goals
Learn more about Go (mainly bubbletea) and Linux
Resources
suse-rancher-supportconfig by eminguez
Description
Update: Live at https://github.com/e-minguez/suse-rancher-supportconfig
I finally didn't used golang but used gum instead
SUSE's supportconfig
support tool collects data from the SUSE Operating system. Rancher's rancher2_logs_collector.sh
support tool does the same for RKE2/K3s.
Wouldn't be nice to have a way to run both and collect all data for SUSE based RKE2/K3s clusters? Wouldn't be even better with a fancy TUI tool like bubbletea?
Ideally the output should be an html page where you can see the logs/data directly from the browser.
Goals
- Familiarize myself with both
supportconfig
andrancher2_logs_collector.sh
tools - Refresh my golang knowledge
- Have something that works at the end of the hackweek ("works" may vary
)
- Be better in naming things
Resources
All links provided above as well as huh
Install Uyuni on Kubernetes in cloud-native way by cbosdonnat
Description
For now installing Uyuni on Kubernetes requires running mgradm
on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.
Goals
Install Uyuni from Rancher UI.
Resources
mgradm
code: https://github.com/uyuni-project/uyuni-tools- Uyuni operator: https://github.com/cbosdo/uyuni-operator
iSCSI integration in Warewulf by ncuralli
Description
This Hackweek project aims to enhance Warewulf’s capabilities by adding iSCSI support, enabling both remote boot and flexible mounting of iSCSI devices within the filesystem. The project, which already handles NFS, DHCP, and iPXE, will be extended to offer iSCSI services as well, centralizing all necessary services for provisioning and booting cluster nodes.
Goals
- iSCSI Boot Option: Enable nodes to boot directly from iSCSI volumes
- Mounting iSCSI Volumes within the Filesystem: Implement support for mounting iSCSI devices at various points within the filesystem
Resources
https://warewulf.org/
Steps
- add generic framework to handle remote ressource/filesystems to
wwctl
[ ] - add iSCSI handling to
wwctl configure
[ ] - add iSCSI to dracut files [ ]
- test it [ ]
kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia
Description
kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.
Goals
- Seamless Multi-Cluster Cloning
- Clone Kubernetes resources across clusters/projects with one command.
- Simplifies management, reduces operational effort.
Resources
Rancher & Kubernetes Docs
- Rancher API, Cluster Management, Kubernetes client libraries.
Development Tools
- Kubectl plugin docs, Go programming resources.
Building and Installing the Plugin
- Set Environment Variables: Export the Rancher URL and API token:
export RANCHER_URL="https://rancher.example.com"
export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
- Build the Plugin: Compile the Go program:
go build -o kubectl-clone ./pkg/
- Install the Plugin:
Move the executable to a directory in your
PATH
:
mv kubectl-clone /usr/local/bin/
Ensure the file is executable:
chmod +x /usr/local/bin/kubectl-clone
- Verify the Plugin Installation: Test the plugin by running:
kubectl clone --help
You should see the usage information for the kubectl-clone
plugin.
Usage Examples
- Clone a Deployment from One Cluster to Another:
kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
- Clone a Service into Another Namespace and Modify Labels:
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng
Description
As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.
Goals
- Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
- Create NFS-Ganesha Container Image on OBS: Image
- Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus
Resources
Setup Kanidm as OIDC provider on Kubernetes by jkuzilek
Description
I am planning to upgrade my homelab Kubernetes cluster to the next level and need an OIDC provider for my services, including K8s itself.
Goals
- Successfully configure and deploy Kanidm on homelab cluster
- Integrate with K8s auth
- Integrate with other services (Envoy Gateway, Container Registry, future deployment of Forgejo?)
Resources
ddflare: (Dynamic)DNS management via Cloudflare API in Kubernetes by fgiudici
Description
ddflare is a project started a couple of weeks ago to provide DDNS management using v4 Cloudflare APIs: Cloudflare offers management via APIs and access tokens, so it is possible to register a domain and implement a DynDNS client without any other external service but their API.
Since ddflare allows to set any IP to any domain name, one could manage multiple A and ALIAS domain records. Wouldn't be cool to allow full DNS control from the project and integrate it with your Kubernetes cluster?
Goals
Main goals are:
- add containerized image for ddflare
- extend ddflare to be able to add and remove DNS records (and not just update existing ones)
- add documentation, covering also a sample pod deployment for Kubernetes
- write a ddflare Kubernetes operator to enable domain management via Kubernetes resources (using kubebuilder)
Available tasks and improvements tracked on ddflare github.
Resources
- https://github.com/fgiudici/ddflare
- https://developers.cloudflare.com/api/
- https://book.kubebuilder.io
Enable the containerized Uyuni server to run on different host OS by j_renner
Description
The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:
- openSUSE Leap
- Cent OS 7
- Ubuntu
- ???
Goals
Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Port the classic browser game HackTheNet to PHP 8 by dgedon
Description
The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.
Goals
- Port the game to PHP 8 and MariaDB 11
- Create a container where the game server can simply be started/stopped
Resources
- https://github.com/nodeg/hackthenet
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Technical talks at universities by agamez
Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.