Project Description
A lot of people are using mechanical keyboard. Having a custom SUSE-branded keycap would be cool. The idea is to create a set of 3D models for such keycaps in various profiles for everyone to print.
Goal for this Hackweek
- List the required profiles
- Create STL files for each of them
- 3D print and test if possible
Resources
- 3D printer, I don't have one
Looking for hackers with the skills:
This project is part of:
Hack Week 21
Activity
Comments
-
over 2 years ago by bmwiedemann | Reply
For the instructions for the previous mini batch of black-chameleon-on-green keycaps see https://mailman.suse.de/mlarch/SuSE/maxtorhof/2018/maxtorhof.2018.02/msg00022.html
-
over 2 years ago by bmwiedemann | Reply
Would also be cool if we could get the Geeko as a standard keycap into https://www.wasdkeyboards.com/products/keycaps.html?p=2 next to Arch, Debian and Mint
-
over 2 years ago by rainerkoenig | Reply
The question is: 3D print the keycap or do it in a more professional way? In my previous job I worked at Fujitsu and when we were producing keyboards they were taking raw keyboads and then engraving them with a laser. You can see lots of videos on keyboard laser engraving on YouTube. Maybe there are services around that do custom keyboards with laser engraving.
On the other hand there are laser cutters for 3D printers on the market, so you could also try to engrave them at home with a 3D printer plus laser unit. I have no idea how precise this is.
3D printing could be possible as well, but don't expect very high quality (shiny surface) from a 3D printed keycap, at least with PLA. Maybe ABS and then finishing it wir Aceton works better. But keep in mind the usually the nozzle of a 3D printer has a diameter of 0.4 mm, so the question is how good the logo will come out with this limitations.
-
over 2 years ago by rainerkoenig | Reply
There are STLs for Cherry Keycaps on Thingiverse. I just setup my 3D printer to try out...
-
over 2 years ago by rainerkoenig | Reply
Half an hour later:
Printed with 0.1mm resolution. The side surfaces are great, the top is a bit rough because its round and not flat.
-
over 2 years ago by rainerkoenig | Reply
Took the SVG scaled and extruded it in openSCAD. Then export to STL. Then then merging this with the STL of the key cap in FreeCAD. STL-Export again. Result: FDM printer is at its limits when using a 0.4 mm nozzle). Maybe better results with resin printers that have a higher resolution.
-
over 2 years ago by cbosdonnat | Reply
Could it help using some filler and sanding to get a better surface before drawing on it?
-
-
over 2 years ago by MattK | Reply
I have a modified CR-10 and have tried to make keycaps before with varying levels of success. I've also tried printing molds in TPU and then using them to make resin keycaps. My smallest nozzle right now is 0.4mm though. Maybe this is my excuse to finally buy a resin printer.
-
over 2 years ago by cbosdonnat | Reply
Not really 3D printable models, but still instructions to build brandable keycaps: https://www.instructables.com/Wooden-Keycaps-Using-Hand-Tools/
Similar Projects
Build a split keyboard from scratch by mpagot
Description
I'm getting older... this summer I experienced an annoying and persistent tingling in one hand and arm. That was the initial motivation to get more interested in ergonomic work gadgets, and from that to split keyboards. And that was the entrance in a rabbit hole.
Which keyboard I like to create:
- Split keyboard for ergonomic (I'm not primary interested in having it portable)
- I have big hands: I like it to fit as much as possible my hands measures
- Columnar stagger keys position
- Not too few keys (at the moment I'm at 24 + 24)
- One row thumb cluster
- No wireless, not to have batteries and for security reason
- CherryMX, or generally speaking no low profile/corne choc
- Hot swap Socket switches
Goals
- Create PCB design for a split keyboard
- Get it produced
- Mount it
- Evaluate FWs
Resources
Progress
Day1
Get the existing Ergogen project working on my TW machine Get Kicad as flatpack Go back to the https://flatfootfox.com/ergogen-part3-pcbs/ Join the #ergogen Discord channel and ask for help about the nets
Day2
Redesign the keyboard matrix on Inkscape Implement it in the Ergogen YAML format Create a Kicad PCB file Start routing it Iterate over the matrix arrangement to try to implement it like 2 layer board and ideally with not vias Get some Kicad tutorials
Day3
Get my hand dirty building a 2x2 key matrix --> welcome to nne
Look at ZKM and how to configure it --> https://github.com/michelepagot/zmk-config-nne Get the FW built by github, try to flash it: get matrix scan pulse but no keys to the PC
Get in contact with ceoloide
, an Ergogen maintainer, about net issue.
Day4
Fix net issue
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
AI + Board Games
Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.
As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.
Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!
Project Goals
Set Up the Stack:
- Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
- Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
- Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
- Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
Design and Implement AI Agents:
- Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
- Fine-tune model parameters to optimize game-playing performance.
- Document the advantages and limitations of each technique.
Test, Analyze, and Refine:
- Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
- Record insights, document learning outcomes, and refine models based on real-world gameplay.
Technical Stack
- Frameworks: TAG and PyTAG for AI agent development
- Platform: SUSE AI
- Tools: AWS for high-performance GPU acceleration
Why This Project Matters
This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.
Our Motivation
We believe hands-on experimentation is the best teacher.
Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!