Project Description
Crev [1] is a collaborative code audit idea. Since it's common that more security engineers can work on the same projects, or there can be a different person auditing a piece of code after some time, there is the need to keep track of the code audit notes in a non-repudiable way.
This can be of interest to our internal security team, for the audits we did on the distribution code packages.
Goal for this Hackweek
- Understand the as-is: complete
- Create / expand workflow proposal: uncomplete
- Implement some support tooling to create proofs uncomplete
- Create some small PoC code in BASH: partially complete
Hackweek 21 outcomes
During this hackweek I tried to understand the framework by putting some basic concepts into code[2] and I wrote dome final considerations [3].
TL;DR there's a lot of work that must to be done in improving formal framework specification. I feel the need to help redesign the grammar of the specifications and the filetype and add some more examples. Implementation has to be agnostic from the documentation, so this means it must be decoupled from the doc itself
Resources
Looking for hackers with the skills:
This project is part of:
Hack Week 21
Activity
Comments
-
over 2 years ago by jzerebecki | Reply
See also https://hackweek.opensuse.org/21/projects/rust-security-reviews-and-cargo-crev
-
over 2 years ago by jzerebecki | Reply
Updated packages available at https://build.opensuse.org/package/show/devel:tools/cargo-crev
Similar Projects
Model checking the BPF verifier by shunghsiyu
Project Description
BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).
One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.
For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.
Goal for this Hackweek
Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.
Resources
- Formal Methods for the Informal Engineer: Tutorial #1 - The Z3 Theorem Prover and its accompanying notebook is a great introduction into Z3
- Has a section specifically on model checking
- Software Verification and Analysis Using Z3 a great example of using Z3 for model checking
- Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers - existing work that use formal verification to prove that the multiplication helper used for value tracking work as intended
- [PATCH v5 net-next 00/12] bpf: rewrite value tracking in verifier - initial patch set that adds tristate number to the verifier
CVE portal for SUSE Rancher products by gmacedo
Description
Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.
Goals
The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.
It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.
Resources
- The page must be simple and easy to read.
- The UI/UX must be as straightforward as possible with minimal visual noise.
- The content must be created automatically from the raw data that we already have internally.
- It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
- The CVE status must be aligned with VEX.
- The raw data must be exportable as CSV file.
- Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.
Bot to identify reserved data leak in local files or when publishing on remote repository by mdati
Description
Scope here is to prevent reserved data or generally "unwanted", to be pushed and saved on a public repository, i.e. on Github, causing disclosure or leaking of reserved informations.
The above definition of reserved or "unwanted" may vary, depending on the context: sometime secret keys or password are stored in data or configuration files or hardcoded in source code and depending on the scope of the archive or the level of security, it can be either wanted, permitted or not at all.
As main target here, secrets will be registration keys or passwords, to be detected and managed locally or in a C.I. pipeline.
Goals
Detection:
- Local detection: detect secret words present in local files;
- Remote detection: detect secrets in files, in pipelines, going to be transferred on a remote repository, i.e. via
git push
;
Reporting:
- report the result of detection on stderr and/or log files, noticed excluding the secret values.
Acton:
- Manage the detection, by either deleting or masking the impacted code or deleting/moving the file itself or simply notify it.
Resources
- Project repository, published on Github (link): m-dati/hkwk24;
- Reference folder: hkwk24/chksecret;
- First pull request (link): PR#1;
- Second PR, for improvements: PR#2;
- README.md and TESTS.md documentation files available in the repo root;
- Test subproject repository, for testing CI on push [TBD].
Notes
We use here some examples of secret words, that still can be improved.
The various patterns to match desired reserved words are written in a separated module, to be on demand updated or customized.
[Legend: TBD = to be done]
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
The story so far
- Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
- Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
- Day 3: Working on trivial changes after I read this blog post:
https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence
with the patch preparation and submit process yet.
- First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
- Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
- Day 4: Triaging more issues found by Coverity.
- The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
- Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
- Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.
I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.
The patches
Migrate from Docker to Podman by tjyrinki_suse
Description
I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.
Goals
- Update OS.
- Migrate from Docker to Podman.
- Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
- Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
- Try to enable the Podman use in production.
- At minimum, learn about all of these topics.
- Optionally, improve Ansible side of things as well...
Resources
A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.
SMB3 Server written entirely in Rust by dmulder
Description
Given the number of bugs frequently discovered in the Samba code caused by memory issues, it makes sense to re-write the smbd service purely in Rust code. Meanwhile, it would be wise to abandon backwards compatibility here with insecure protocol versions, and simply implement the SMB3 spec.
Goals
Get a simple server up and running and get it merged into upstream Samba (which now has Rust build support).
Resources
Hacking on sched_ext by flonnegren
Description
Sched_ext upstream has some interesting issues open for grabs:
Goals
Send patches to sched_ext upstream
Also set up perfetto to trace some of the example schedulers.
Resources
https://github.com/sched-ext/scx
Implement a CLI tool for Trento - trentoctl by nkopliku
Description
Implement a trentoctl
CLI for interacting with a trento installation
Goals
- learn rust
- implement an initial
trentoctl
tool to enhance trento automation - have fun
Resources
trento rust. TUIs listed on this other hackweek project Hack on rich terminal user interfaces
Kanidm: A safe and modern IDM system by firstyear
Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.
In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.
In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.
For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.
I'm happy to help and share more, so please get in touch!
Agama installer on-line demo by lslezak
Description
The Agama installer provides a quite complex user interface. We have some screenshots on the web page but as it is basically a web application it would be nice to have some on-line demo where users could click and check it live.
The problem is that the Agama server directly accesses the hardware (storage probing) and loads installation repositories. We cannot easily mock this in the on-line demo so the easiest way is to have just a read-only demo. You could explore the configuration options but you could not change anything, all changes would be ignored.
The read-only demo would be a bit limited but I still think it would be useful for potential users get the feeling of the new Agama installer and get familiar with it before using in a real installation.
As a proof of concept I already created this on-line demo.
The implementation basically builds Agama in two modes - recording mode where it saves all REST API responses and replay mode where it for the REST API requests returns the previously recorded responses. Recording in the browser is inconvenient and error prone, there should be some scripting instead (see below).
Goals
- Create an Agama on-line demo which can be easily tested by users
- The Agama installer is still in alpha phase and in active development, the online demo needs to be easily rebuilt with the latest Agama version
- Ideally there should be some automation so the demo page is rebuilt automatically without any developer interactions (once a day or week?)
TODO
- Use OpenAPI to get all Agama REST API endpoints, write a script which queries all the endpoints automatically and saves the collected data to a file (see this related PR).
- Write a script for starting an Agama VM (use libvirt/qemu?), the script should ensure we always use the same virtual HW so if we need to dump the latest REST API state we get the same (or very similar data). This should ensure the demo page does not change much regarding the storage proposal etc...
- Fix changing the product, currently it gets stuck after clicking the "Select" button.
- Move the mocking data (the recorded REST API responses) outside the Agama sources, it's too big and will be probably often updated. To avoid messing the history keep it in a separate GitHub repository
- Allow changing the UI language
- Display some note (watermark) in the page so it is clear it is a read-only demo (probably with some version or build date to know how old it is)
- Automation for building new demo page from the latest sources. There should be some check which ensures the recorded data still matches the OpenAPI specification.
Changing the UI language
This will be quite tricky because selecting the proper translation file is done on the server side. We would probably need to completely re-implement the logic in the browser side and adapt the server for that.
Also some REST API responses contain translated texts (storage proposal, pattern names in software). We would need to query the respective endpoints in all supported languages and return the correct response in runtime according to the currently selected language.
Resources
- Agama sources
- Experimental proof of concept demo
- The respective source code change