My current mail setup is mu4e and emacs based mail client included with the amazing mu mail indexer. mu works similar to notmuch but allows easy bidirectional operation with the original Maildir. Add mbsync (isync) to sync imap locally and msmtp and you have a full mail setup.
The idea is to create a fancy version of this setup using a browser based application. The architecture is similar to mu4e. Instead of mu4e talking to mu-server, a small backend written in go talks to mu-server. The backend serves a javascript application and provides an HTTP API to it. The app is written in Vue.js.
The current prototype can already display the subjects of the mail as you type in the textfield. It uses plain rest for now. A Websocket would allow for progress report (but it is so fast that has not been necessary until now).
The backend implements the mu-server s-exp protocol and for now exposes the cmd:find operation.
This project is part of:
Hack Week 16
Activity
Comments
-
about 8 years ago by vitoravelino | Reply
@dmacvicar, is the prototype source hosted somewhere? If yes, is there a
Getting Startedin the README? I'd like to give it a try. :)
Similar Projects
Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng
Description
As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.
Goals
- Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
- Create NFS-Ganesha Container Image on OBS: Image
- Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus
Resources
Rewrite Distrobox in go (POC) by fabriziosestito
Description
Rewriting Distrobox in Go.
Main benefits:
- Easier to maintain and to test
- Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)
Goals
- Build a minimal starting point with core commands
- Keep the CLI interface compatible: existing users shouldn't notice any difference
- Use a clean Go architecture with adapters for different container backends
- Keep dependencies minimal and binary size small
- Benchmark against the original shell script
Resources
- Upstream project: https://github.com/89luca89/distrobox/
- Distrobox site: https://distrobox.it/
- ArchWiki: https://wiki.archlinux.org/title/Distrobox
terraform-provider-feilong by e_bischoff
Project Description
People need to test operating systems and applications on s390 platform.
Installation from scratch solutions include:
- just deploy and provision manually
(with the help of ftpbootscript, if you are at SUSE) - use
s3270terminal emulation (used byopenQApeople?) - use
LXCfrom IBM to start CP commands and analyze the results - use
zPXEto do some PXE-alike booting (used by theorthosteam?) - use
tessiato install from scratch using autoyast - use
libvirtfor s390 to do some nested virtualization on some already deployed z/VM system - directly install a Linux kernel on a LPAR and use
kvm+libvirtfrom there
Deployment from image solutions include:
- use
ICICweb interface (openstackin disguise, contributed by IBM) - use
ICICfrom theopenstackterraformprovider (used byRancherQA) - use
zvm_ansibleto controlSMAPI - connect directly to
SMAPIlow-level socket interface
IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.
What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your system/z.
Other Feilong-based solutions include:
- make
libvirtFeilong-aware - simply call
Feilongfrom shell scripts withcurl - use
zvmconnectorclient python library from Feilong - use
zthinpart of Feilong to directly commandSMAPI.
Goal for Hackweek 23
My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.
My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.
Goals for Hackweek 24
Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!
Let's add support for fiberchannel disks and multipath.
Possible goals for Hackweek 25
Modernization, maturity, and maintenance.
SUSE Health Check Tools by roseswe
SUSE HC Tools Overview
A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.
Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.
Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.
Goals
- Overall improvement of the tools
- Adding new collectors
- Add support for SLES16
Resources
csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go
docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*
$ getrpm -r pacemaker
>> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name:
+--------------+----------------------------+--------+--------------+--------------------+
| Package Name | Version | Arch | Release | Repository |
+--------------+----------------------------+--------+--------------+--------------------+
| pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 |
| pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 |
+--------------+----------------------------+--------+--------------+--------------------+
Total packages found: 2
Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco
Description
The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.
Goals
- Create my own library for userfaultfd(2) in Golang.
- Create my own library for HTTP Range Requests.
- Complete portability with Unix.
- Benchmarks.
- Contribute some tests to LTP.
Resources
- https://docs.kernel.org/admin-guide/mm/userfaultfd.html
- https://github.com/loopholelabs/userfaultfd-go
- https://github.com/DHowett/ranger
- https://www.cons.org/cracauer/cracauer-userfaultfd.html