Building a container bootloader

Building a UEFI application that can boot a EFI stubbed linux kernel+initrd from a container store stored in a fat filesystem.

Goal for this Hackweek

  • Build a OCI image containing a kernel+initrd
  • Build an EFI application that can boot the above kernel
  • ...
  • Profit!?
  • Try it out with UKI!

Resources

Looking for hackers with the skills:

zig containers bootloader oci

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: ancorgs liked this project.
  • about 1 year ago: epaolantonio liked this project.
  • about 1 year ago: amunoz liked this project.
  • about 1 year ago: flonnegren added keyword "zig" to this project.
  • about 1 year ago: flonnegren added keyword "containers" to this project.
  • about 1 year ago: flonnegren added keyword "bootloader" to this project.
  • about 1 year ago: flonnegren added keyword "oci" to this project.
  • about 1 year ago: flonnegren started this project.
  • about 1 year ago: flonnegren originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    AI + Board Games

    Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.

    As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.

    Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!


    Project Goals

    1. Set Up the Stack:

      • Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
      • Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
      • Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
      • Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
    2. Design and Implement AI Agents:

      • Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
      • Fine-tune model parameters to optimize game-playing performance.
      • Document the advantages and limitations of each technique.
    3. Test, Analyze, and Refine:

      • Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
      • Record insights, document learning outcomes, and refine models based on real-world gameplay.

    Technical Stack

    • Frameworks: TAG and PyTAG for AI agent development
    • Platform: SUSE AI
    • Tools: AWS for high-performance GPU acceleration

    Why This Project Matters

    This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.


    Our Motivation

    We believe hands-on experimentation is the best teacher.

    Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!


    Enable the containerized Uyuni server to run on different host OS by j_renner

    Description

    The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:

    • openSUSE Leap
    • Cent OS 7
    • Ubuntu
    • ???

    Goals

    Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources