Looking for hackers with the skills:

kernel aarch64 mainlining phones soc qualcomm exynos mediatek

This project is part of:

Hack Week 24

Activity

  • 22 days ago: michals liked this project.
  • 23 days ago: epaolantonio liked this project.
  • 23 days ago: pvorel added keyword "mediatek" to this project.
  • 23 days ago: pvorel added keyword "exynos" to this project.
  • 23 days ago: pvorel added keyword "kernel" to this project.
  • 23 days ago: pvorel added keyword "aarch64" to this project.
  • 23 days ago: pvorel added keyword "mainlining" to this project.
  • 23 days ago: pvorel added keyword "phones" to this project.
  • 23 days ago: pvorel added keyword "soc" to this project.
  • 23 days ago: pvorel added keyword "qualcomm" to this project.
  • 23 days ago: pvorel originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho

    Creator:
    Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
    Members:
    Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team

    Description

    Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.

    Goals

    Primary

    Start phasing out/deprecation of older SMB versions

    Secondary

    • Clean up of the code (with focus on the newer versions)
    • Update cifs-utils
    • Update documentation
    • Improve backport workflow (see below)

    Technical details

    Ideas for the implementation.

    • fs/smb/client/{old,new}.c to generate the respective modules
      • Maybe don't create separate folders? (re-evaluate as things progresses!)
    • Remove server->{ops,vals} if possible
    • Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
    • Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
    • Restructure multichannel
      • Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
      • Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
    • Authentication mechanisms
      • Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.


    Linux on Cavium CN23XX cards by tsbogend

    Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    Hacking on sched_ext by flonnegren

    Description

    Sched_ext upstream has some interesting issues open for grabs:

    Goals

    Send patches to sched_ext upstream

    Also set up perfetto to trace some of the example schedulers.

    Resources

    https://github.com/sched-ext/scx


    Investigate non-booting Forlinx OKMX8MX-C board (aarch64) by a_faerber

    Description

    In the context of a SUSE customer inquiry last year, a Forlinx OKMX8MX-C arm64 board had been relayed to me from China that a customer was not successful booting SUSE Linux Micro on. Typically this happens when the vendor's bootloader (e.g., U-Boot) is not configured properly (e.g., U-Boot's distro boot) to be compliant with Arm SystemReady Devicetree (formerly IR) band. Unfortunately I could not immediately get it to emit any output, to even diagnose why it wasn't working. There was no public documentation on the vendor's website to even confirm I was checking the right UARTs.

    Earlier this year (2024) I happened to meet the ODM/OEM, Forlinx, at Embedded World 2024 in Nuremberg and again the Monday before Hackweek 24 at Electronica 2024 in Munich. The big puzzle was that the PCB print "OKMX8MX-C" does not match any current Forlinx product, there being OKMX8MM-C and OKMX8MP-C products with the Mini and Plus variants of NXP i.MX 8M family instead. One suggestion from Forlinx staff was to double-check the DIP switches on the board for boot mode selection.

    Goals

    Double-check the board name and investigate further what may be wrong with this board.

    Resources

    none

    Progress

    • The board name is indeed as spelled above, not matching any product on forlinx.net.
    • The DIP switches were set to boot from microSD.
    • Changing the DIP switches to eMMC boot did result in UART1 RS-232 output! (although at times garbled with the cable supplied and USB adapter used)
    • As feared, it did not automatically load our GRUB from USB.
    • Booting our GRUB manually from USB (via eMMC U-Boot commands fatload+bootefi) was unsuccessful, with partially Chinese error messages.
    • This confirmed the initial suspicion, already shared with Forlinx at Embedded World 2024, that the Forlinx System-on-Module's boot firmware was not Arm SystemReady Devicetree compliant and that a firmware update would be necessary to remedy that.
    • The microSD card turned out not to contain a bootable image but to only include Chinese-language board documentation (dated 20220507) and BSP files. They used a diverging name of OKMX8MQ-C.