Project Description
Moving as much as possible of MicroOS Desktop into containers.
Goal is to reduce the need for a reboot of MicroOS Desktop to apply security update as much as possible. For most services, a restart of the container for the service should be enough.
Goal for this Hackweek
Improving the gdm proof of concept
Create other containers for other components used for MicroOS Desktop.
Maybe evaluate usage of flatpak instead of OCI containers for this (now that OBS is able to build flatpak).
Resources
This project is part of:
Hack Week 20
Activity
Comments
Similar Projects
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver
Write a shell extension for GNOME by tdz
Description
I usually do kernel and systems programming. This project is about learning more about the userspace and application side. Writing an extension to gnome-shell seems like a good place to start. The GNOME shell is scriptable via JavaScript and a number of such extension is available from upstream.
On X11, there used to be a toy rsp. screensaver called XPenguins. After the desktop being idle for some time, it sent penguins falling down the screen and walking along window borders. It doesn't work any longer with Wayland-based compositing, but re-implementing it as extension for the GNOME shell might be possible. There already existed a port around a decade ago that could serve as starting point.
Goals
- Learn about how shell extensions work and how to write one
- See if XPenguins can be converted
- If successful, try to upstream the result
Resources
Improve Development Environment on Uyuni by mbussolotto
Description
Currently create a dev environment on Uyuni might be complicated. The steps are:
- add the correct repo
- download packages
- configure your IDE (checkstyle, format rules, sonarlint....)
- setup debug environment
- ...
The current doc can be improved: some information are hard to be find out, some others are completely missing.
Dev Container might solve this situation.
Goals
Uyuni development in no time:
- using VSCode:
- setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
- dev container should contains all dependencies
- setup debug environment
- implement a GitHub Workspace solution
- re-write documentation
Lots of pieces are already implemented: we need to connect them in a consistent solution.
Resources
- https://github.com/uyuni-project/uyuni/wiki
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver
Technical talks at universities by agamez
Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Port the classic browser game HackTheNet to PHP 8 by dgedon
Description
The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.
Goals
- Port the game to PHP 8 and MariaDB 11
- Create a container where the game server can simply be started/stopped
Resources
- https://github.com/nodeg/hackthenet
Migrate from Docker to Podman by tjyrinki_suse
Description
I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.
Goals
- Update OS.
- Migrate from Docker to Podman.
- Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
- Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
- Try to enable the Podman use in production.
- At minimum, learn about all of these topics.
- Optionally, improve Ansible side of things as well...
Resources
A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.