transactional-update, the application to update read-only systems such as openSUSE MicroOS and openSUSE Kubic and the Transactional Server installations of openSUSE Leap, openSUSE Tumbleweed and SUSE Linux Enterprise Server, evolved from a POC to a fully fledged solution - and is currently completely written in Bash. This has been working really well in the past, but is gradually reaching its limits, especially when thinking about supporting additional file systems or ports to other Linux distributions - yes, we have a huge interest in other distributions adopting our technology.
A C++ version would simplify those abstractions, but would it also make maintenance of the complete application easier? Check that as part of a POC and refresh C++ knowledge on the way there.
Potential caveats:
- How is the selfupdate supposed to work when the application is compiled against a newer version of the core libraries?
Looking for hackers with the skills:
This project is part of:
Hack Week 19
Activity
Comments
-
almost 5 years ago by Pharaoh_Atem | Reply
I'd love to see a DNF-based port of this working on Fedora and openSUSE.
-
almost 5 years ago by fos | Reply
No, I won't do the DNF based port myself
But if everything works out as expected you will get an application with a clear abstraction layer, so it should be easy to port it to any other package management system.
(I wasn't able to work on this for the last two days due to an emergency at home, but I'll continue my personal Hack Week on Monday & Tuesday.)
-
over 4 years ago by fos | Reply
I finally found the time to finish the POC, you can find it on https://github.com/laenion/transactional-update/tree/c%2B%2B. Currently it's only barely possible to dist-upgrade a system using "dup", but the core framework skeleton exists.
The C++ version can be found in src.
Implementing a different package manager / porting to a different system should be quite simple now: Just put your own implementation of the PackageManager class into the Packages directory and add an appropriate selection mechanism to PackageManager.cpp.
Would this be something feasible for you? The alternative for now would be to keep the Bash implementation - and source a different file, which will contain the commands for the corresponding platform.
-
-
almost 5 years ago by Pharaoh_Atem | Reply
> How is the selfupdate supposed to work when the application is compiled against a newer version of the core libraries?
This should only be a problem if the package manager backend does something insane like use subprocesses to execute package management actions because the entire package manager code state isn't remaining in memory during the transaction.
Similar Projects
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
New KDE Plasma notification app/applet by apappas
Description
My memory is terrible so I depend a lot on notifications to carry me through the workday. As a plasma user I am ok with the current applet, but I don't love it. It is too small for the centrality it has in my day. Also I dislike how you can not go back to notifications you have dismissed
Goals
Develop a plasma app that * must gather notifications without disrupting the existing notification app * must offer the ablity to refer to dismissed/archived/seen notification up to some defined point in the past * must allow deletion of notifications
Port some classic game to Linux by MDoucha
Let's pick some old classic game, reverse engineer the data formats and game rules and write an open source engine for it from scratch. Some games from 1990s are simple enough that we could have a playable prototype by the end of the week.
Write which games you'd like to hack on in the comments. Don't forget to check e.g. on Open Source Game Clones, Github and SourceForge whether the game is ported already.
Hack Week 24 - Master of Orion II: Battle at Antares & Chaos Overlords
Work on Master of Orion II continues but we can hack more than one game. Chaos Overlords is a dystopian, lighthearted, cyberpunk turn-based strategy game originally released in 1996 for Windows 95 and Mac OS. The player takes on the role of a Chaos Overlord, attempting to control a city. Gameplay involves hiring mercenary gangs and deploying them on an 8-by-8 grid of city sectors to generate income, occupy sectors and take over the city.
How to ~~install & play~~ observe the decompilation progress:
- Clone the Git repository
- A playable reimplementation does not exist yet, but when it does, it will be linked in the repository mentioned above.
Further work needed:
- Analyze the remaining unknown data structures, most of which are related to the AI.
- Decompile the AI completely. The strong AI is part of the appeal of the game. It cannot be left out.
- Reimplement the game.
Hack Week 20, 21, 22 & 23 - Master of Orion II: Battle at Antares
Master of Orion II is one of the greatest turn-based 4X games of the 1990s. Explore the galaxy, colonize planets, research new technologies, fight space monsters and alien empires and in the end, become the ruler of the galaxy one way or another.
How to install & play:
- Clone the Git repository
- Run
./bootstrap; ./configure; make && make install
- Copy all *.LBX files from the original Master of Orion II to the installation data directory (
/usr/local/share/openorion2
by default) - Run
openorion2
Further work needed:
- Analyze the rest of the original savegame format and a few remaining data files.
- Implement most of the game. The open source engine currently supports only loading saved games from the original version and viewing the galaxy map, fleet management and list of known planets.
Hack Week 19 - Signus: The Artifact Wars
Signus is a Czech turn-based strategy game similar to Panzer General or Battle Isle series. Originally published in 1998 and open-sourced by the original developers in 2003.
How to install & play:
- Clone the Git repository
- Run
./bootstrap; ./configure; make && make install
in bothsignus
andsignus-data
directories. - Run
signus
Further work needed:
- Create openSUSE package
- Implement full support for original game data (the open source version uses slightly different data file contents but original game data can be converted using a script).
YQPkg - Bringing the Single Package Selection Back to Life by shundhammer
tl;dr
Rip out the high-level YQPackageSelector widget from YaST and make it a standalone Qt program without any YaST dependencies.
See section "Result" at the bottom for the current status after the hack week.
The Past and the Present
We used to have and still have a powerful software selection with the YaST sw_single module (and the YaST patterns counterpart): You can select software down to the package level, you can easily select one of many available package versions, you can select entire patterns - or just view them and pick individual packages from patterns.
You can search packages based on name, description, "requires" or "provides" level, and many more things.
The Future
YaST is on its way out, to be replaced by the new Agama installer and Cockpit for system administration. Those tools can do many things, but fine-grained package selection is not among them. And there are also no other Open Source tools available for that purpose that even come close to the YaST package selection.
Many aspects of YaST have become obsolete over the years; many subsystems now come with a good default configuration, or they can configure themselves automatically. Just think about sound or X11 configuration; when did you last need to touch them?
For others, the desktops bring their own tools (e.g. printers), or there are FOSS configuration tools (NetworkManager, BlueMan). Most YaST modules are no longer needed, and for many others there is a replacement in tools like Cockpit.
But no longer having a powerful fine-grained package selection like in YaST sw_single will hurt. Big time. At least until there is an adequate replacement, many users will want to keep it.
The Idea
YaST sw_single always revolved around a powerful high-level widget on the abstract UI level. Libyui has low-level widgets like YPushButton, YCheckBox, YInputField, more advanced ones like YTable, YTree; and some few very high-level ones like YPackageSelector and YPatternSelector that do the whole package selection thing alone, working just on the libzypp level and changing the status of packages or patterns there.
For the YaST Qt UI, the YQPackageSelector / YQPatternSelector widgets work purely on the Qt and libzypp level; no other YaST infrastructure involved, in particular no Ruby (or formerly YCP) interpreter, no libyui-level widgets, no bindings between Qt / C++ and Ruby / YaST-core, nothing. So it's not too hard to rip all that part out of YaST and create a standalone program from it.
For the NCurses UI, the NCPackageSelector / NCPatternSelector create a lot of libyui widgets (inheriting YWidget / NCWidget) and use a lot of libyui calls to glue them together; and all that of course still needs a lot of YaST / libyui / libyui-ncurses infrastructure. So NCurses is out of scope here.
Preparatory Work: Initializing the Package Subsystem
To see if this is feasible at all, the existing UI examples needed some fixing to check what is needed on that level. That was the make-or-break decision: Would it be realistically possible to set the needed environment in libzypp up (without being stranded in the middle of that task alone at the end of the hack week)?
Yes, it is: That part is already working:
https://github.com/yast/yast-ycp-ui-bindings/pull/71
Go there for a screenshot
That's already halfway there.
The complete Ruby code of this example is here. The real thing will be pure C++ without any YaST dependencies.
The Plan