The goal is to learn about Kaggle and Machine Learning.
Resources:
- Getting started
- Competitions:
- Tutorials
Open for suggestions.
Looking for hackers with the skills:
This project is part of:
Hack Week 17
Activity
Comments
-
over 2 years ago by ddemaio | Reply
The Tutorials link was deleted. An alternative could be the Free Python Tutorial link.
Similar Projects
FamilyTrip Planner: A Personalized Travel Planning Platform for Families by pherranz
Description
FamilyTrip Planner is an innovative travel planning application designed to optimize travel experiences for families with children. By integrating APIs for flights, accommodations, and local activities, the app generates complete itineraries tailored to each family’s unique interests and needs. Recommendations are based on customizable parameters such as destination, trip duration, children’s ages, and personal preferences. FamilyTrip Planner not only simplifies the travel planning process but also offers a comprehensive, personalized experience for families.
Goals
This project aims to: - Create a user-friendly platform that assists families in planning complete trips, from flight and accommodation options to recommended family-friendly activities. - Provide intelligent, personalized travel itineraries using artificial intelligence to enhance travel enjoyment and minimize time and cost. - Serve as an educational project for exploring Go programming and artificial intelligence, with the goal of building proficiency in both.
Resources
To develop FamilyTrip Planner, the project will leverage: - APIs such as Skyscanner, Google Places, and TripAdvisor to source real-time information on flights, accommodations, and activities. - Go programming language to manage data integration, API connections, and backend development. - Basic machine learning libraries to implement AI-driven itinerary suggestions tailored to family needs and preferences.
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[ ]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[ ]
Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)[ ]
Package management (install, remove, update...)[ ]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already)[ ]
Applying any basic salt state (including a formula)[ ]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
AI + Board Games
Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.
As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.
Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!
Project Goals
Set Up the Stack:
- Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
- Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
- Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
- Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
Design and Implement AI Agents:
- Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
- Fine-tune model parameters to optimize game-playing performance.
- Document the advantages and limitations of each technique.
Test, Analyze, and Refine:
- Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
- Record insights, document learning outcomes, and refine models based on real-world gameplay.
Technical Stack
- Frameworks: TAG and PyTAG for AI agent development
- Platform: SUSE AI
- Tools: AWS for high-performance GPU acceleration
Why This Project Matters
This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.
Our Motivation
We believe hands-on experimentation is the best teacher.
Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.