Description
Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).
Goals
Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.
Resources
Repo: https://github.com/digitaltom/semantic-knowledge-search
Public instance: https://geeko.port0.org/
Results
Internal instance:
I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b
) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.
This project is part of:
Hack Week 24
Activity
Comments
Be the first to comment!
Similar Projects
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo
Description
Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.
Goals
Develop an Elixir application via the Phoenix framework that:
- Employs Retrieval Augmented Generation (RAG) techniques
- Supports the integration and utilization of various Large Language Models (LLMs).
- Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.
Resources
- https://elixir-lang.org/
- https://www.phoenixframework.org/
- https://github.com/elixir-nx/bumblebee
- https://ollama.com/
ghostwrAIter - a local AI assisted tool for helping with support cases by paolodepa
Description
This project is meant to fight the loneliness of the support team members, providing them an AI assistant (hopefully) capable of scraping supportconfigs in a RAG fashion, trying to answer specific questions.
Goals
- Setup an Ollama backend, spinning one (or more??) code-focused LLMs selected by license, performance and quality of the results between:
- deepseek-coder-v2
- dolphin-mistral
- starcoder2
- (...others??)
- Setup a Web UI for it, choosing an easily extensible and customizable option between:
- Extend the solution in order to be able to:
- Add ZIU/Concord shared folders to its RAG context
- Add BZ cases, splitted in comments to its RAG context
- A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query BZ
- Add specific packages picking them from IBS repos
- A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query IBS
- A plus would be to desume the packages of interest and the right channel and version to be picked from the added BZ cases
COOTWbot by ngetahun
Project Description
At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.
Goal for this Hackweek
- Build data ingestion
Data source:
- SUSE KB docs
- scc github docs
- scc trello knowledge board
Test out new RAG architecture
https://gitlab.suse.de/ngetahun/cootwbot
Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo
Description
Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.
Goals
Develop an Elixir application via the Phoenix framework that:
- Employs Retrieval Augmented Generation (RAG) techniques
- Supports the integration and utilization of various Large Language Models (LLMs).
- Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.
Resources
- https://elixir-lang.org/
- https://www.phoenixframework.org/
- https://github.com/elixir-nx/bumblebee
- https://ollama.com/
Gen-AI chatbots and test-automation of generated responses by mdati
Description
Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.
Try to define basic guidelines and requirements for quality test automation of AI-generated responses.
First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.
Goals
- Identify criteria and measuring scales for assessment of a text content.
- Define quality of an answer/text based on defined criteria .
- Identify some knowledge sectors and a proper list of problems/questions per sector.
- Manually run query session and apply evaluation criteria to answers.
- Draft requirements for test automation of AI answers.
Resources
- Announcement of SUSE-AI for Hack Week in Slack
- Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.
Notes
Foundation models (FMs):
are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.Large language models (LLMs):
are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.
Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.
Research how LLMs could help to Linux developers and/or users by anicka
Description
Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.
Goals
- Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
- Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
- Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
- Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
- Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.
Resources
- Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
- Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
- Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
- Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
- Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
- Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
- Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.
Recipes catalog and calculator in Rails 8 by gfilippetti
My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.
TO DO
- Index page
- Product page
- Admin area -- Supplies calculator based on orders -- Orders notification
- Authentication
- Payment
- Deployment
Day 1
As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.
Day 2
Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.
Hackweek 24
For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.
Day 1