Description

Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.

Goals

The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.

It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.

Resources

  • The page must be simple and easy to read.
  • The UI/UX must be as straightforward as possible with minimal visual noise.
  • The content must be created automatically from the raw data that we already have internally.
  • It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
  • The CVE status must be aligned with VEX.
  • The raw data must be exportable as CSV file.
  • Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.

Looking for hackers with the skills:

rancher security cve

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: mosquetero joined this project.
  • about 1 year ago: bizart liked this project.
  • about 1 year ago: wombelix liked this project.
  • about 1 year ago: gameboy974 liked this project.
  • about 1 year ago: gameboy974 joined this project.
  • about 1 year ago: hfschmidt liked this project.
  • about 1 year ago: gmacedo added keyword "rancher" to this project.
  • about 1 year ago: gmacedo added keyword "security" to this project.
  • about 1 year ago: gmacedo added keyword "cve" to this project.
  • about 1 year ago: gmacedo started this project.
  • about 1 year ago: gmacedo originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    What if infrastructure scaled itself instead of making you scale it?

    Can we use existing Rancher capabilities like CAPI, autoscaling, and GitOps to make this simpler instead of building everything from scratch?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback


    Cluster API Provider for Harvester by rcase

    Project Description

    The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.

    The project has been bootstrapped in HackWeek 23, and its code is available here.

    Work done in HackWeek 2023

    • Have a early working version of the provider available on Rancher Sandbox : *DONE *
    • Demonstrated the created cluster can be imported using Rancher Turtles: DONE
    • Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo

    DONE in HackWeek 24:

    DONE in 2025 (out of Hackweek)

    • Support of ClusterClass
    • Add to clusterctl community providers, you can add it directly with clusterctl
    • Testing on newer versions of Harvester v1.4.X and v1.5.X
    • Support for clusterctl generate cluster ...
    • Improve Status Conditions to reflect current state of Infrastructure
    • Improve CI (some bugs for release creation)

    Goals for HackWeek 2025

    • FIRST and FOREMOST, any topic is important to you
    • Add e2e testing
    • Certify the provider for Rancher Turtles
    • Add Machine pool labeling
    • Add PCI-e passthrough capabilities.
    • Other improvement suggestions are welcome!

    Thanks to @isim and Dominic Giebert for their contributions!

    Resources

    Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.

    This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:


    Liz - Prompt autocomplete by ftorchia

    Description

    Liz is the Rancher AI assistant for cluster operations.

    Goals

    We want to help users when sending new messages to Liz, by adding an autocomplete feature to complete their requests based on the context.

    Example:

    • User prompt: "Can you show me the list of p"
    • Autocomplete suggestion: "Can you show me the list of p...od in local cluster?"

    Example:

    • User prompt: "Show me the logs of #rancher-"
    • Chat console: It shows a drop-down widget, next to the # character, with the list of available pod names starting with "rancher-".

    Technical Overview

    1. The AI agent should expose a new ws/autocomplete endpoint to proxy autocomplete messages to the LLM.
    2. The UI extension should be able to display prompt suggestions and allow users to apply the autocomplete to the Prompt via keyboard shortcuts.

    Resources

    GitHub repository


    Rancher Cluster Lifecycle Visualizer by jferraz

    Description

    Rancher’s v2 provisioning system represents each downstream cluster with several Kubernetes custom resources across multiple API groups, such as clusters.provisioning.cattle.io and clusters.management.cattle.io. Understanding why a cluster is stuck in states like "Provisioning", "Updating", or "Unavailable" often requires jumping between these resources, reading conditions, and correlating them with agent connectivity and known failure modes. This project will build a Cluster Lifecycle Visualizer: a small, read-only controller that runs in the Rancher management cluster and generates a single, human-friendly view per cluster. It will watch Rancher cluster CRDs, derive a simplified lifecycle phase, keep a history of phase transitions from installation time onward, and attach a short, actionable recommendation string that hints at what the operator should check or do next.

    Goals

    • Provide a compact lifecycle summary for each Rancher-managed cluster (e.g. Provisioning, WaitingForClusterAgent, Active, Updating, Error) derived from provisioning.cattle.io/v1 Cluster and management.cattle.io/v3 Cluster status and conditions.
    • Maintain a phase history for each cluster, allowing operators to see how its state evolved over time since the visualizer was installed.
    • Attach a recommended action to the current phase using a small ruleset based on common Rancher failure modes (for example, cluster agent not connected, cluster still stabilizing after an upgrade, or generic error states), to improve the day-to-day debugging experience.
    • Deliver an easy-to-install, read-only component (single YAML or small Helm chart) that Rancher users can deploy to their management cluster and inspect via kubectl get/describe, without UI changes or direct access to downstream clusters.
    • Use idiomatic Go, wrangler, and Rancher APIs.

    Resources

    • Rancher Manager documentation on RKE2 and K3s cluster configuration and provisioning flows.
    • Rancher API Go types for provisioning.cattle.io/v1 and management.cattle.io/v3 (from the rancher/rancher repository or published Go packages).
    • Existing Rancher architecture docs and internal notes about cluster provisioning, cluster agents, and node agents.
    • A local Rancher management cluster (k3s or RKE2) with a few test downstream clusters to validate phase detection, history tracking, and recommendations.


    SUSE Virtualization (Harvester): VM Import UI flow by wombelix

    Description

    SUSE Virtualization (Harvester) has a vm-import-controller that allows migrating VMs from VMware and OpenStack, but users need to write manifest files and apply them with kubectl to use it. This project is about adding the missing UI pieces to the harvester-ui-extension, making VM Imports accessible without requiring Kubernetes and YAML knowledge.

    VMware and OpenStack admins aren't automatically familiar with Kubernetes and YAML. Implementing the UI part for the VM Import feature makes it easier to use and more accessible. The Harvester Enhancement Proposal (HEP) VM Migration controller included a UI flow implementation in its scope. Issue #2274 received multiple comments that an UI integration would be a nice addition, and issue #4663 was created to request the implementation but eventually stalled.

    Right now users need to manually create either VmwareSource or OpenstackSource resources, then write VirtualMachineImport manifests with network mappings and all the other configuration options. Users should be able to do that and track import status through the UI without writing YAML.

    Work during the Hack Week will be done in this fork in a branch called suse-hack-week-25, making progress publicly visible and open for contributions. When everything works out and the branch is in good shape, it will be submitted as a pull request to harvester-ui-extension to get it included in the next Harvester release.

    Testing will focus on VMware since that's what is available in the lab environment (SUSE Virtualization 1.6 single-node cluster, ESXi 8.0 standalone host). Given that this is about UI and surfacing what the vm-import-controller handles, the implementation should work for OpenStack imports as well.

    This project is also a personal challenge to learn vue.js and get familiar with Rancher Extensions development, since harvester-ui-extension is built on that framework.

    Goals

    • Learn Vue.js and Rancher Extensions fundamentals required to finish the project
    • Read and learn from other Rancher UI Extensions code, especially understanding the harvester-ui-extension code base
    • Understand what the vm-import-controller and its CRDs require, identify ready to use components in the Rancher UI Extension API that can be leveraged
    • Implement UI logic for creating and managing VmwareSource / OpenstackSource and VirtualMachineImport resources with all relevant configuration options and credentials
    • Implemnt UI elements to display VirtualMachineImport status and errors

    Resources

    HEP and related discussion

    SUSE Virtualization VM Import Documentation

    Rancher Extensions Documentation

    Rancher UI Plugin Examples

    Vue Router Essentials

    Vue Router API

    Vuex Documentation


    vex8s-controller: a kubernetes controller to automatically generate VEX documents of your running workloads by agreggi

    Description

    vex8s-controller is an add-on for SBOMscanner project. Its purpose is to automatically generate VEX documents based on the workloads running in a kubernetes cluster. It integrates directly with SBOMscanner by monitoring VulnerabilityReports created for container images and producing corresponding VEX documents that reflect each workload’s SecurityContext.

    vex8s-controller workflow

    Here's the workflow explained:

    1. sbomscanner scans for images in registry
    2. generates a VulnerabilityReport with the image CVEs
    3. vex8s-controller triggers when a workload is scheduled on the cluster and generates a VEX document based on the workload SecurityContext configuration
    4. the VEX document is provided by vex8s-controller using a VEX Hub repository
    5. sbomscanner configure the VEXHub CRD to point to the internal vex8s-controller VEX Hub repository

    Goals

    The objective is to build a kubernetes controller that uses the vex8s mitigation rules engine to generate VEX documents and serve them through an internal VEX Hub repository within the cluster. SBOMscanner can then be configured to consume VEX data directly from this in-cluster repository managed by vex8s-controller.

    Resources

    Summary

    The project ended up with this PoC on GitHub: vex8s-controller.

    The controller works fine, but needs work to make it more stable. Instructions to reproduce a demo locally are reported in the repository.


    OSHW USB token for Passkeys (FIDO2, U2F, WebAuthn) and PGP by duwe

    Description

    The idea to carry your precious key material along in a specially secured hardware item is almost as old as public keys themselves, starting with the OpenPGP card. Nowadays, an USB plug or NFC are the hardware interfaces of choice, and password-less log-ins are fortunately becoming more popular and standardised.

    Meanwhile there are a few products available in that field, for example

    • yubikey - the "market leader", who continues to sell off buggy, allegedly unfixable firmware ROMs from old stock. Needless to say, it's all but open source, so assume backdoors.

    • nitrokey - the "start" variant is open source, but the hardware was found to leak its flash ROM content via the SWD debugging interface (even when the flash is read protected !) Compute power is barely enough for Curve25519, Flash memory leaves room for only 3 keys.

    • solokey(2) - quite neat hardware, with a secure enclave called "TrustZone-M". Unfortunately, the OSS firmware development is stuck in a rusty dead end and cannot use it. Besides, NXP's support for open source toolchains for its devboards is extremely limited.

    I plan to base this project on the not-so-tiny USB stack, which is extremely easy to retarget, and to rewrite / refactor the crypto protocols to use the keys only via handles, so the actual key material can be stored securely. Best OSS support seems to be for STM32-based products.

    Goals

    Create a proof-of-concept item that can provide a second factor for logins and/or decrypt a PGP mail with your private key without disclosing the key itself. Implement or at least show a migration path to store the private key in a location with elevated hardware security.

    Resources

    STM32 Nucleo, blackmagic probe, tropicsquare tropic01, arm-none cross toolchain


    Exploring Rust's potential: from basics to security by sferracci

    Description

    This project aims to conduct a focused investigation and practical application of the Rust programming language, with a specific emphasis on its security model. A key component will be identifying and understanding the most common vulnerabilities that can be found in Rust code.

    Goals

    Achieve a beginner/intermediate level of proficiency in writing Rust code. This will be measured by trying to solve LeetCode problems focusing on common data structures and algorithms. Study Rust vulnerabilities and learning best practices to avoid them.

    Resources

    Rust book: https://doc.rust-lang.org/book/


    Help Create A Chat Control Resistant Turnkey Chatmail/Deltachat Relay Stack - Rootless Podman Compose, OpenSUSE BCI, Hardened, & SELinux by 3nd5h1771fy

    Description

    The Mission: Decentralized & Sovereign Messaging

    FYI: If you have never heard of "Chatmail", you can visit their site here, but simply put it can be thought of as the underlying protocol/platform decentralized messengers like DeltaChat use for their communications. Do not confuse it with the honeypot looking non-opensource paid for prodect with better seo that directs you to chatmailsecure(dot)com

    In an era of increasing centralized surveillance by unaccountable bad actors (aka BigTech), "Chat Control," and the erosion of digital privacy, the need for sovereign communication infrastructure is critical. Chatmail is a pioneering initiative that bridges the gap between classic email and modern instant messaging, offering metadata-minimized, end-to-end encrypted (E2EE) communication that is interoperable and open.

    However, unless you are a seasoned sysadmin, the current recommended deployment method of a Chatmail relay is rigid, fragile, difficult to properly secure, and effectively takes over the entire host the "relay" is deployed on.

    Why This Matters

    A simple, host agnostic, reproducible deployment lowers the entry cost for anyone wanting to run a privacy‑preserving, decentralized messaging relay. In an era of perpetually resurrected chat‑control legislation threats, EU digital‑sovereignty drives, and many dangers of using big‑tech messaging platforms (Apple iMessage, WhatsApp, FB Messenger, Instagram, SMS, Google Messages, etc...) for any type of communication, providing an easy‑to‑use alternative empowers:

    • Censorship resistance - No single entity controls the relay; operators can spin up new nodes quickly.
    • Surveillance mitigation - End‑to‑end OpenPGP encryption ensures relay operators never see plaintext.
    • Digital sovereignty - Communities can host their own infrastructure under local jurisdiction, aligning with national data‑policy goals.

    By turning the Chatmail relay into a plug‑and‑play container stack, we enable broader adoption, foster a resilient messaging fabric, and give developers, activists, and hobbyists a concrete tool to defend privacy online.

    Goals

    As I indicated earlier, this project aims to drastically simplify the deployment of Chatmail relay. By converting this architecture into a portable, containerized stack using Podman and OpenSUSE base container images, we can allow anyone to deploy their own censorship-resistant, privacy-preserving communications node in minutes.

    Our goal for Hack Week: package every component into containers built on openSUSE/MicroOS base images, initially orchestrated with a single container-compose.yml (podman-compose compatible). The stack will:

    • Run on any host that supports Podman (including optimizations and enhancements for SELinux‑enabled systems).
    • Allow network decoupling by refactoring configurations to move from file-system constrained Unix sockets to internal TCP networking, allowing containers achieve stricter isolation.
    • Utilize Enhanced Security with SELinux by using purpose built utilities such as udica we can quickly generate custom SELinux policies for the container stack, ensuring strict confinement superior to standard/typical Docker deployments.
    • Allow the use of bind or remote mounted volumes for shared data (/var/vmail, DKIM keys, TLS certs, etc.).
    • Replace the local DNS server requirement with a remote DNS‑provider API for DKIM/TXT record publishing.

    By delivering a turnkey, host agnostic, reproducible deployment, we lower the barrier for individuals and small communities to launch their own chatmail relays, fostering a decentralized, censorship‑resistant messaging ecosystem that can serve DeltaChat users and/or future services adopting this protocol

    Resources


    Looking at Rust if it could be an interesting programming language by jsmeix

    Get some basic understanding of Rust security related features from a general point of view.

    This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.

    The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.

    An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.