Description
We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.
Goals
- Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
- Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.
This project is part of:
Hack Week 24
Activity
Comments
-
2 months ago by tdz | Reply
Day 1: I forked of simpledrm into a new vesadrm driver. This immediately works well on non-EFI PC hardware. I further added support for EDID information. This data has to be provided by the boot loader. There's already a field in Linux's boot parameters. It is not set by grub. So a patch there seems required.
See: https://gitlab.suse.de/tzimmermann/linux/-/commits/vesadrm-day1
-
2 months ago by tdz | Reply
Day 2: With vesadrm in place and the EDID property attached, it was time to fill it with data. As mentioned, there's already such a field in the kernel's boot params on x86. It has never been used; or at least i could not find any related code in grub2, grub(-legacy) or even LiLo.
But grub2 already reads out the EDID for its graphics backends. And all we have to do is to copy is to the Linux boot parameters. We cannot transfer EDID extension headers, so we have to clear the extension field. Still, the result is EDID data for the firmware drivers. A patch for grub2 is on OBS at https://build.opensuse.org/package/show/home:tdz:branches:Base:System/grub2.
Here's a screenshot of my test system's GNOME, where it correctly names the monitor from the provided data.
This was on Wayland. I also have a patch pending for Xorg, so that it accepts vesadrm as driver.
Overall, this project is going nicely and I'm very happy with the progress being made.
See: https://gitlab.suse.de/tzimmermann/linux/-/commits/vesadrm-day2
-
2 months ago by tdz | Reply
Day 3: EDID support in vesadrm works well the patched grub2. So today I worked on support for color LUTs. On VGA hardware, it is possible to write the VGA color LUT behind the back of the VESA interface. VESA even tells us if it runs on VGA-compatible hardware. Linux' existing vesafb driver contains example code to do this. If set up, pixels in framebuffer memory will be look into the VGA color LUT during scanout to produce the actual output color.
With this in place, vesadrm now sets up a gamma-LUT property for userspace. Compositors can load gamma tables into the property and vesadrm programs them to VGA. Combined with the EDID data, this enables simple SDR color management. GNOME also implements 'night mode' via gamma luts. When I tested, this now works nicely with vesadrm.
See: https://gitlab.suse.de/tzimmermann/linux/-/commits/vesadrm-day3
-
2 months ago by tdz | Reply
Day 4: The gamma LUT also serves as the color look-up table for color-index modes. Getting DRM format C8 done was the topic of day 4. C8 is a palette mode with 8 bits per pixel. The value is the index into the color LUT. The LUT itself is again in the VGA hardware. C8 is supported by fbcon, so I could wire-up everything directly. When grub programs the mode and runs the kernel, vesadrm now displayes the console correctly. Before day 4, vesadrm would have simply refused to probe.
Compositors don't support C8 (X11 window managers did in the early 90s, but that likely don't count today.) Instead they want XRGB8888. Vesadrm also emulates this via the color LUT. The compositor's framebuffer is in XRGB8888 format, which vesadrm transforms to RGB332 during screen updates. RGB332 is 3 bits of red, 3 bits of green and 2 bits of blue; all packed into a single byte. With the hardware programmed to C8, that byte is the index into the color LUT, which vesadrm programs to RGB666 values that VGA requires. This process is called dithering and transforms the compositor's 24-bit RGB output into an 256-color output on the display.
A photo of the output of my test system is here. This is Firefox on GNOME ruining at 800x600 with 256 colors. While not exactly pretty, it is fast and usable. The desktop UI elements are fairly close to their expected colors. Graphics with higher fidelity, such as the picture on that opened website, show significant distortion.
See: https://gitlab.suse.de/tzimmermann/linux/-/commits/vesadrm-day4
-
2 months ago by tdz | Reply
Summary: I'm really happy how this project turned out. With some polish, everything up-to-and-including day 3 has the potential to go upstream as new driver. That would give a vesadrm driver similar to simpledrm, but with EDID and color management. Support for color-index modes could be added later. There, it would make sense to add additional modes, such as C4, C2, and C1. A bit more work would be required in the DRM framework work support that. Not only would that enable support for really low-end PC hardware, but it would also give an easily available (via qemu) testbed for these low-end features. Some of them are required by today's LCD display, which can be hard to obtain.
For a possible efidrm, it would be a fork of vesadrm up-to-and-including day 2. That is simpledrm plus EDID support. Seems simple enough. AFAICT grub can also provide EDID data from EFI on x86. On non-x86, the kernel would have to fetch it by itself from the EFI firmware.
-
about 2 months ago by Pharaoh_Atem | Reply
This is awesome! Do you know when you'll submit it to be included upstream?
-
Similar Projects
Finish gfxprim application multiplexor (window manager) by metan
Project Description
I've implemented drivers for a few e-ink displays during the last hackweek and made sure that gfxprim widgets run nicely on e-ink as well. The missing piece to have a portable e-ink computer/reader/music player/... is a application that can switch between currently running applications and that can start new applications as well. Half of the solution is ready, there is a proxy gfxprim backend where applications render into a piece of a shared memory and input events (e.g. keyboard, mouse) can be multiplexed. What is missing is an interface (possibly touchscreen friendly as well) to make it user friendly.
Goal for this Hackweek
Make nekowm usable "window manager".
Resources
New openSUSE-welcome by lkocman
Project Description
Let's revisit our existing openSUSE welcome app.
My goal was to show Leap 16 in a new coat. Welcome app adds to the first time use experience. We've recently added donation button to our existing welcome.
Some things that I recently wanted to address were EOL and possibly upgrade notification.
I've already done some experiments with mint welcome app, but not sure if it's better than the existing one.
There is also a PR to rework existing app https://github.com/openSUSE/openSUSE-welcome/pull/36 (this should be considered as an option too)
Goal for this Hackweek
New welcome app, possibly with EOL notification for Leap.
1) Welcome application(s) with (rebrand changes) maintained under github.com/openSUSE
2) Application is submitted to openSUSE:Factory && openSUSE:Leap:16.0
3) Updated needles in openQA (probably post hackweek)
Resources
Reddit discussion about the best welcome app out there.
Github repo for the current welcome app.
Create a DRM driver for VGA video cards by tdz
Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.
VGA has a number of limitations, which make this project interesting.
- There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
- Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
- VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.
The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.
Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA
Create a DRM driver for VGA video cards by tdz
Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.
VGA has a number of limitations, which make this project interesting.
- There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
- Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
- VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.
The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.
Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA
Linux on Cavium CN23XX cards by tsbogend
Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel
Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.
Result
In the end I concentrated again to msm8994:
- 507aae9a3549c ("arm64: dts: qcom: msm8994-angler: Enable power key, volume up/down") (will be in kernel 6.14)
- Testing of c910544d22347 ("arm64: dts: qcom: msm8994: Describe USB interrupts") (will be in kernel 6.14)
- WIP USB support for msm8994
FizzBuzz OS by mssola
Project Description
FizzBuzz OS (or just fbos
) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).
This kernel provides just one system call, write
, which allows any program to pass the string to be written into stdout.
This project is free software and you can find it here.
Goal for this Hackweek
- Better understand the RISC-V SBI interface.
- Better understand RISC-V in privileged mode.
- Have fun.
Resources
Results
The project was a resounding success Lots of learning, and the initial target was met.
Modernize ocfs2 by goldwynr
Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.
Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests
Create a DRM driver for VGA video cards by tdz
Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.
VGA has a number of limitations, which make this project interesting.
- There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
- Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
- VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.
The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.
Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA