Better support for Chromebooks

Chromebooks do have very limited hardware in terms of storage and RAM. But it is still the cheapest solution to a truly open source notebook, as it allows to replace its coreboot based bootloader with your own coreboot and payload (f.e. Tiano Core or Seabios).

By installing a standard proposal of Tumbleweed or Leap with btrfs you will be left with about 2-3 GB of free storage on a 16 GB eMMC storage for installing packages and saving files. In addition to that many features like hibernation, suspend and function buttons (TTY switching) don't work out of the box.

There is a special Ubuntu based distribution for Chromebooks available called "Gallium OS" (https://galliumos.org/). They do have a lot of patches and some neat configuration for XFCE4 to make it perfectly work on Chromebooks by still looking very nice and offering a lot of storage. But you know what it lacks? Correct, some Geeko love ;)

In this project following steps could be done to improve the openSUSE support on Chromebooks:

  • port Chromebook specific patches of "Gallium OS" to Factory and upstream them if necessary/possible
  • custom setup proposal for Chromebooks in Tumbleweed or a custom Image for Chromebooks
    • including a modified XFCE configuration with openSUSE branding
    • minimum selection of packages necessary for a proper desktop session (f.e. replace LibreOffice with smaller solutions)
  • openSUSE Leap 15 Image for Chromebooks
    • including a modified XFCE configuration with openSUSE branding
    • minimum selection of packages necessary for a proper desktop session (f.e. replace LibreOffice with smaller solutions)

Looking for hackers with the skills:

kiwi kernel linux ux ui yast

This project is part of:

Hack Week 17

Activity

  • over 7 years ago: tdz liked this project.
  • over 7 years ago: michals liked this project.
  • over 7 years ago: SLindoMansilla liked this project.
  • over 7 years ago: aspiers liked this project.
  • over 7 years ago: mbrugger liked this project.
  • over 7 years ago: suntorytimed liked this project.
  • over 7 years ago: suntorytimed added keyword "ui" to this project.
  • over 7 years ago: suntorytimed added keyword "yast" to this project.
  • over 7 years ago: suntorytimed added keyword "kernel" to this project.
  • over 7 years ago: suntorytimed added keyword "linux" to this project.
  • over 7 years ago: suntorytimed added keyword "ux" to this project.
  • over 7 years ago: suntorytimed added keyword "kiwi" to this project.
  • over 7 years ago: suntorytimed originated this project.

  • Comments

    • suntorytimed
      over 7 years ago by suntorytimed | Reply

      I can provide test hardware (Dell Chromebook 11 Education and Asus C200MA) with Coreboot and Tiano Core on it.

    • suntorytimed
      over 7 years ago by suntorytimed | Reply

      The more I think about it, the more I want to do this as a hacker myself. Too many project ideas but not enough time add-emoji

      • mbrugger
        over 7 years ago by mbrugger | Reply

        You know that we have support for an arm based chromebook? https://en.opensuse.org/HCL:ARMChromebook ask @algraf for more info add-emoji

    • jevrard
      over 7 years ago by jevrard | Reply

      Keep me informed, I am following GalliumOS (waiting for the new version!), and I'd be pretty happy to know more about your plans.

    Similar Projects

    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    pudc - A PID 1 process that barks to the internet by mssola

    Description

    As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:

    • The backend is written in a mixture of C and RISC-V assembly.
    • The backend is actually PID1 (for real, not within a container).
    • We poll and parse incoming HTTP requests ourselves.
    • The frontend is a mere HTML page with htmx.

    The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.

    I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.

    Goals

    • Have a better understanding of different Linux features from user space down to the kernel internals.
    • Most importantly: have fun.

    Resources


    bpftrace contribution by mkoutny

    Description

    bpftrace is a great tool, no need to sing odes to it here. It can access any kernel data and process them in real time. It provides helpers for some common Linux kernel structures but not all.

    Goals

    • set up bpftrace toolchain
    • learn about bpftrace implementation and internals
    • implement support for percpu_counters
    • look into some of the first issues
    • send a refined PR (on Thu)

    Resources


    Add Qualcomm Snapdragon 765G (SM7250) basic device tree to mainline linux kernel by pvorel

    Qualcomm Snapdragon 765G (SM7250) (smartphone SoC) has no support in the linux kernel, nor in u-boot. Try to add basic device tree support. The hardest part will be to create boot.img which will be accepted by phone.

    UART is available for smartphone :).


    dynticks-testing: analyse perf / trace-cmd output and aggregate data by m.crivellari

    Description

    dynticks-testing is a project started years ago by Frederic Weisbecker. One of the feature is to check the actual configuration (isolcpus, irqaffinity etc etc) and give feedback on it.

    An important goal of this tool is to parse the output of trace-cmd / perf and provide more readable data, showing the duration of every events grouped by PID (showing also the CPU number, if the tasks has been migrated etc).

    An example of data captured on my laptop (incomplete!!):

              -0     [005] dN.2. 20310.270699: sched_wakeup:         WaylandProxy:46380 [120] CPU:005
              -0     [005] d..2. 20310.270702: sched_switch:         swapper/5:0 [120] R ==> WaylandProxy:46380 [120]
    ...
        WaylandProxy-46380 [004] d..2. 20310.295397: sched_switch:         WaylandProxy:46380 [120] S ==> swapper/4:0 [120]
              -0     [006] d..2. 20310.295397: sched_switch:         swapper/6:0 [120] R ==> firefox:46373 [120]
             firefox-46373 [006] d..2. 20310.295408: sched_switch:         firefox:46373 [120] S ==> swapper/6:0 [120]
              -0     [004] dN.2. 20310.295466: sched_wakeup:         WaylandProxy:46380 [120] CPU:004
    

    Output of noise_parse.py:

    Task: WaylandProxy Pid: 46380 cpus: {4, 5} (Migrated!!!)
            Wakeup Latency                                Nr:        24     Duration:          89
            Sched switch: kworker/12:2                    Nr:         1     Duration:           6
    

    My first contribution is around Nov. 2024!

    Goals

    • add more features (eg cpuset)
    • test / bugfix

    Resources

    Progresses

    isolcpus and cpusets implemented and merged in master: dynticks-testing.git commit


    Enhance setup wizard for Uyuni by PSuarezHernandez

    Description

    This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.

    Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:

    • user creation
    • adding products / channels
    • generating bootstrap repos
    • create activation keys
    • ...

    Goals

    • Provide initial setup wizard as part of mgradm uyuni installation

    Resources


    git-fs: file system representation of a git repository by fgonzalez

    Description

    This project aims to create a Linux equivalent to the git/fs concept from git9. Now, I'm aware that git provides worktrees, but they are not enough for many use cases. Having a read-only representation of the whole repository simplifies scripting by quite a bit and, most importantly, reduces disk space usage. For instance, during kernel livepatching development, we need to process and analyze the source code of hundreds of kernel versions simultaneously.This is rather painful with git-worktrees, as each kernel branch requires no less than 1G of disk space.

    As for the technical details, I'll implement the file system using FUSE. The project itself should not take much time to complete, but let's see where it takes me.

    I'll try to keep the same design as git9, so the file system will look something like:

    
    /mnt/git
          +-- ctl
          +-- HEAD
          |    +-- tree
          |    |    +--files
          |    |    +--in
          |    |    +--head
          |    |
          |    +-- hash
          |    +-- msg
          |    +-- parent
          |
          +-- branch
          |      |
          |      +-- heads
          |      |      +-- master
          |      |            +-- [commit files, see HEAD]
          |      +-- remotes
          |             +-- origin
          |                     +-- master
          |                            +-- [commit files, see HEAD]
          +-- object
                +-- 00051fd3f066e8c05ae7d3cf61ee363073b9535f # blob contents
                +-- 00051fd3f066e8c05ae7d3cf61ee363073b9535c
                      +-- [tree contents, see HEAD/tree]
                +-- 3f5dbc97ae6caba9928843ec65fb3089b96c9283
                      +-- [commit files, see HEAD]
    

    So, if you wanted to look at the commit message of the current branch, you could simply do:

    cat /mnt/git/HEAD/msg 

    No collaboration needed. This is a solo project.

    Goals

    • Implement a working prototype.

    • Measure and improve the performance if possible. This step will be the most crucial one. User space filesystems are slower by nature.

    Resources

    https://orib.dev/git9.html

    https://docs.kernel.org/filesystems/fuse/fuse.html


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    pudc - A PID 1 process that barks to the internet by mssola

    Description

    As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:

    • The backend is written in a mixture of C and RISC-V assembly.
    • The backend is actually PID1 (for real, not within a container).
    • We poll and parse incoming HTTP requests ourselves.
    • The frontend is a mere HTML page with htmx.

    The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.

    I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.

    Goals

    • Have a better understanding of different Linux features from user space down to the kernel internals.
    • Most importantly: have fun.

    Resources


    mgr-ansible-ssh - Intelligent, Lightweight CLI for Distributed Remote Execution by deve5h

    Description

    By the end of Hack Week, the target will be to deliver a minimal functional version 1 (MVP) of a custom command-line tool named mgr-ansible-ssh (a unified wrapper for BOTH ad-hoc shell & playbooks) that allows operators to:

    1. Execute arbitrary shell commands on thousand of remote machines simultaneously using Ansible Runner with artifacts saved locally.
    2. Pass runtime options such as inventory file, remote command string/ playbook execution, parallel forks, limits, dry-run mode, or no-std-ansible-output.
    3. Leverage existing SSH trust relationships without additional setup.
    4. Provide a clean, intuitive CLI interface with --help for ease of use. It should provide consistent UX & CI-friendly interface.
    5. Establish a foundation that can later be extended with advanced features such as logging, grouping, interactive shell mode, safe-command checks, and parallel execution tuning.

    The MVP should enable day-to-day operations to efficiently target thousands of machines with a single, consistent interface.

    Goals

    Primary Goals (MVP):

    Build a functional CLI tool (mgr-ansible-ssh) capable of executing shell commands on multiple remote hosts using Ansible Runner. Test the tool across a large distributed environment (1000+ machines) to validate its performance and reliability.

    Looking forward to significantly reducing the zypper deployment time across all 351 RMT VM servers in our MLM cluster by eliminating the dependency on the taskomatic service, bringing execution down to a fraction of the current duration. The tool should also support multiple runtime flags, such as:

    mgr-ansible-ssh: Remote command execution wrapper using Ansible Runner
    
    Usage: mgr-ansible-ssh [--help] [--version] [--inventory INVENTORY]
                       [--run RUN] [--playbook PLAYBOOK] [--limit LIMIT]
                       [--forks FORKS] [--dry-run] [--no-ansible-output]
    
    Required Arguments
    --inventory, -i      Path to Ansible inventory file to use
    
    Any One of the Arguments Is Required
    --run, -r            Execute the specified shell command on target hosts
    --playbook, -p       Execute the specified Ansible playbook on target hosts
    
    Optional Arguments
    --help, -h           Show the help message and exit
    --version, -v        Show the version and exit
    --limit, -l          Limit execution to specific hosts or groups
    --forks, -f          Number of parallel Ansible forks
    --dry-run            Run in Ansible check mode (requires -p or --playbook)
    --no-ansible-output  Suppress Ansible stdout output
    

    Secondary/Stretched Goals (if time permits):

    1. Add pretty output formatting (success/failure summary per host).
    2. Implement basic logging of executed commands and results.
    3. Introduce safety checks for risky commands (shutdown, rm -rf, etc.).
    4. Package the tool so it can be installed with pip or stored internally.

    Resources

    Collaboration is welcome from anyone interested in CLI tooling, automation, or distributed systems. Skills that would be particularly valuable include:

    1. Python especially around CLI dev (argparse, click, rich)


    Bring to Cockpit + System Roles capabilities from YAST by miguelpc

    Bring to Cockpit + System Roles features from YAST

    Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.

    Goals

    The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.

    Resources

    A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit

    Linux System Roles:

    First meeting Hackweek catchup


    openSUSE on ZoL from OpenZFS project by jkohoutek

    Idea is to have SUSE system with OpenZFS as root FS.

    Why ZFS

    Ways in which ZFS is better than BTRFS

    Main goal

    Have OpenZFS as install option in the installer and utilize zedenv Boot Environment Manager for SUSE updates install

    Goals

    • synergy of ZFS with dracut, so snapshots are correctly added to the grub
    • synergy of zedenv with zypper
      • before every update snapshot is created
      • when new kernel or other package which requires reboot is about to be installed, the update will be processed to the new boot environment snapshot and grub configuration changed to boot to this new one
    • integrate Root on ZFS as install option to the YaST
    • configure Kiwi for the ZFS install images

    Completed goals

    • prepare ZFS pool compatible with openSUSE installation ✓
    • install openSUSE with root on ZFS ✓
    • boot to the prepared and installed system ✓

    Current progress

    Resources: