Project Description
Our current workflow for contributing to compliance as code requires manual testing. Automated testing either through the upstream CI or openQA would lower development time.
Goal for this Hackweek
- Working prototype for OpenQA testing (hard, but openQA is awesome) OR
- Testing for SLES on the upstream CI (probably easier, but needs cooperation from upstream)
Resources
No Hackers yet
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
Be the first to comment!
Similar Projects
Enhance UV openQA helper script by mdonis
Description
A couple months ago an UV openQA helper script was created to help/automate the searching phase inside openQA for a given MU to test. The script searches inside all our openQA job groups (qam-sle) related with a given MU and generates an output suitable to add (copy & paste) inside the update log.
This is still a WIP and could use some enhancements.
Goals
- Move script from bash to python: this would be useful in case we want to include this into MTUI in the future. The script will be separate from MTUI for now. The idea is to have this as a CLI tool using the click library or something similar.
- Add option to look for jobs in other sections inside aggregated updates: right now, when looking for regression tests under aggregated updates for a given MU, the script only looks inside the Core MU job group. This is where most of the regression tests we need are located, but some MUs have their regression tests under the YaST/Containers/Security MU job groups. We should keep the Core MU group as a default, but add an option to be able to look into other job groups under aggregated updates.
- Remove the
-a
option: this option is used to indicate the update ID and is mandatory right now. This is a bit weird and goes against posix stardards. It was developed this way in order to avoid using positional parameters. This problem should be fixed if we move the script to python.
Some other ideas to consider:
- Look into the QAM dashboard API. This has more info on each MU, could use this to link general openQA build results, whether the related RR is approved or not, etc
- Make it easier to see if there's regression tests for a package in an openQA test build. Check if there's a possibility to search for tests that have the package name in them inside each testsuite.
- Unit testing?
More ideas TBD
Resources
https://github.com/os-autoinst/scripts/blob/master/openqa-search-maintenance-core-jobs
https://confluence.suse.com/display/maintenanceqa/Guide+on+how+to+test+Updates
Post-Hackweek update
All major features were implemented. Unit tests are still in progress, and project will be moved to the SUSE github org once everything's done. https://github.com/mjdonis/oqa-search
Setup a new openQA on more powerful server by JNa
Description
- currently local openQA storage is insufficient
Goals
-Migrate to more powerful machine
Resources
-Service Rainbow
OpenQA Golang api client by hilchev
Description
I would like to make a simple cli tool to communicate with the OpenQA API
Goals
- OpenQA has a ton of information that is hard to get via the UI. A tool like this would make my life easier :)
- Would potentially make it easier in the future to make UI changes without Perl.
- Improve my Golang skills
Resources
- https://go.dev/doc/
- https://openqa.opensuse.org/api
Learn obs/ibs sync tool by xlai
Description
Once images/repo are built from IBS/OBS, there is a tool to sync the image from IBS/OBS to openqa asset directory and trigger openqa jobs accordingly.
Goals
Check how the tool is implemented, and be capable to add/modify our needed images/repo in future by ourselves.
Resources
- https://github.com/os-autoinst/openqa-trigger-from-obs
- https://gitlab.suse.de/openqa/openqa-trigger-from-ibs-plugin/-/tree/master?ref_type=heads
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.
Automate PR process by idplscalabrini
Description
This project is to streamline and enhance the pr review process by adding automation for identifying some issues like missing comments, identifying sensitive information in the PRs like credentials. etc. By leveraging GitHub Actions and golang hooks we can focus more on high-level reviews
Goals
- Automate lints and code validations on Github actions
- Automate code validation on hook
- Implement a bot to pre-review the PRs
Resources
Golang hooks and Github actions