Project Description

Currently we are in a situation with libzypp where we have a C++ based and hard to use API. Due to the nature of C++ it's basically impossible to use it from other languages like Rust or even Python.

In the last hackweek I layed the grounds for calling into libzypp via GLib, so I'm going to improve on that trying to wrap the legacy reports into a new style report API and maybe expose more functionality.

Goal for this Hackweek

  • Wrap new C++ event API in GLib-C
  • Catch and forward legacy reports via said API
  • Expose more functionality as we go

I already started to look into it, development will be done here: https://github.com/bzeller/libzypp/tree/zyppng-api

Resources

Looking for hackers with the skills:

zypper gobject c c++ introspection scriptability async

This project is part of:

Hack Week 22 Hack Week 23

Activity

  • about 1 year ago: jmodak liked this project.
  • over 2 years ago: cdywan liked this project.
  • over 2 years ago: j_renner liked this project.
  • over 2 years ago: shunghsiyu liked this project.
  • over 2 years ago: mvidner liked this project.
  • over 2 years ago: zbenjamin started this project.
  • over 2 years ago: zbenjamin added keyword "zypper" to this project.
  • over 2 years ago: zbenjamin added keyword "gobject" to this project.
  • over 2 years ago: zbenjamin added keyword "c" to this project.
  • over 2 years ago: zbenjamin added keyword "c++" to this project.
  • over 2 years ago: zbenjamin added keyword "introspection" to this project.
  • over 2 years ago: zbenjamin added keyword "scriptability" to this project.
  • over 2 years ago: zbenjamin added keyword "async" to this project.
  • over 2 years ago: zbenjamin originated this project.

  • Comments

    • zbenjamin
      over 2 years ago by zbenjamin | Reply

      So during the hackweek I managed to set up a very basic GObject based API that is able to initialize libzypp, list the names of all currenty known repositories and use the new async libzypp API to download a file. This is a good start and we should be able to build on it.

      You can see the resulting python script that is controlling libzypp here

    Similar Projects

    "autoremove" functionality for zypper by e_bischoff

    The purpose would be to have the equivalent of Ubuntu's "apt-get autoremove" functionality.

    When you install package P, it might draw in dependancies D1, D2, ... Dn automatically.

    When you later uninstall P, the dependancies D1, D2, ..., Dn might remain on your system.

    If you keep installing and uninstalling packages, after a while your system remains cluttered with things you don't need.

    The idea would be to mark all dependancies that were installed but not explicitely requested as "installed automatically". Then a command like "zypper autoremove" could remove them at once if they are not needed anymore.

    Approaches seen online

    After scouring forms for solutions these are some alias's used to replicate the functionality

    1. zypper packages --unneeded | awk -F'|' 'NR==0 || NR==1 || NR==2 || NR==3 || NR==4 {next} {print $3}' | grep -v Name | sudo xargs zypper remove --clean-deps

    2. This one is a script and has bashisms bash mapfile -t unneeded < <(zypper --quiet pa --unneeded | awk '$1 == "i" { print $5, "-", $7 }') (( ${#unneeded@]} )) && sudo zypper --quiet rm --clean-deps --details "${unneeded@]}"

    3. sudo zypper rm $(zypper pa --unneeded | awk '/i / {print $3}' FS='|' | uniq | tr -d ' ')

    Based on testing zypper packages --orphaned provides packages that are not in any repo, even if a user has explicitly installed them, so --orphaned may not be the way to go, instead focusing on --unneeded


    Ansible for add-on management by lmanfredi

    Description

    Machines can contains various combinations of add-ons and are often modified during the time.

    The list of repos can change so I would like to create an automation able to reset the status to a given state, based on metadata available for these machines

    Goals

    Create an Ansible automation able to take care of add-on (repo list) configuration using metadata as reference

    Resources

    Results

    Created WIP project Ansible-add-on-openSUSE


    Add a machine-readable output to dmidecode by jdelvare

    Description

    There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.

    Goals

    Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.


    FizzBuzz OS by mssola

    Project Description

    FizzBuzz OS (or just fbos) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).

    This kernel provides just one system call, write, which allows any program to pass the string to be written into stdout.

    This project is free software and you can find it here.

    Goal for this Hackweek

    • Better understand the RISC-V SBI interface.
    • Better understand RISC-V in privileged mode.
    • Have fun.

    Resources

    Results

    The project was a resounding success add-emoji Lots of learning, and the initial target was met.


    ESETv2 Emulator / interpreter by m.crivellari

    Description

    ESETv2 is an intriguing challenge developed by ESET, available on their website under the "Challenge" menu. The challenge involves an "assembly-like" language and a Python compiler that generates .evm binary files.

    This is an example using one of their samples (it prints N Fibonacci numbers):

    .dataSize 0
    .code
    
    loadConst 0, r1 # first
    loadConst 1, r2 # second
    
    loadConst 1, r14 # loop helper
    
    consoleRead r3
    
    loop:
        jumpEqual end, r3, r15
    
        add r1, r2, r4
        mov r2, r1
        mov r4, r2
    
        consoleWrite r1
    
        sub r3, r14, r3
        jump loop
    end:
    hlt
    

    This language also supports multi-threading. It includes instructions such as createThread to start a new thread, joinThread to wait until a thread completes, and lock/unlock to facilitate synchronization between threads.

    Goals

    • create a full interpreter able to run all the available samples provided by ESET.
    • improve / optimize memory (eg. using bitfields where needed as well as avoid unnecessary memory allocations)

    Resources

    Achivements

    Project still not complete. Added lock / unlock instruction implementation but further debug is needed; there is a bug somewhere. Actually the code it works for almost all the examples in the samples folder. 1 of them is not yet runnable (due to a missing "write" opcode implementation), another will cause the bug to show up; still not investigated, anyhow.


    FastFileCheck work by pstivanin

    Description

    FastFileCheck is a high-performance, multithreaded file integrity checker for Linux. Designed for speed and efficiency, it utilizes parallel processing and a lightweight database to quickly hash and verify large volumes of files, ensuring their integrity over time.

    https://github.com/paolostivanin/FastFileCheck

    Goals

    • Release v1.0.0

    Design overwiew:

    • Main thread (producer): traverses directories and feeds the queue (one thread is more than enough for most use cases)
    • Dedicated consumer thread: manages queue and distributes work to threadpool
    • Worker threads: compute hashes in parallel

    This separation of concerns is efficient because:

    • Directory traversal is I/O bound and works well in a single thread
    • Queue management is centralized, preventing race conditions
    • Hash computation is CPU-intensive and properly parallelized


    YQPkg - Bringing the Single Package Selection Back to Life by shundhammer

    tl;dr

    Rip out the high-level YQPackageSelector widget from YaST and make it a standalone Qt program without any YaST dependencies.

    See section "Result" at the bottom for the current status after the hack week.

    Current Status

    See the development status issue at the GitHub repo.

    tl;dr: It's usable now with all the key features.

    It does real package installation / removal / update with reasonable user feedback.

    The Past and the Present

    We used to have and still have a powerful software selection with the YaST sw_single module (and the YaST patterns counterpart): You can select software down to the package level, you can easily select one of many available package versions, you can select entire patterns - or just view them and pick individual packages from patterns.

    You can search packages based on name, description, "requires" or "provides" level, and many more things.

    The Future

    YaST is on its way out, to be replaced by the new Agama installer and Cockpit for system administration. Those tools can do many things, but fine-grained package selection is not among them. And there are also no other Open Source tools available for that purpose that even come close to the YaST package selection.

    Many aspects of YaST have become obsolete over the years; many subsystems now come with a good default configuration, or they can configure themselves automatically. Just think about sound or X11 configuration; when did you last need to touch them?

    For others, the desktops bring their own tools (e.g. printers), or there are FOSS configuration tools (NetworkManager, BlueMan). Most YaST modules are no longer needed, and for many others there is a replacement in tools like Cockpit.

    But no longer having a powerful fine-grained package selection like in YaST sw_single will hurt. Big time. At least until there is an adequate replacement, many users will want to keep it.

    The Idea

    YaST sw_single always revolved around a powerful high-level widget on the abstract UI level. Libyui has low-level widgets like YPushButton, YCheckBox, YInputField, more advanced ones like YTable, YTree; and some few very high-level ones like YPackageSelector and YPatternSelector that do the whole package selection thing alone, working just on the libzypp level and changing the status of packages or patterns there.

    For the YaST Qt UI, the YQPackageSelector / YQPatternSelector widgets work purely on the Qt and libzypp level; no other YaST infrastructure involved, in particular no Ruby (or formerly YCP) interpreter, no libyui-level widgets, no bindings between Qt / C++ and Ruby / YaST-core, nothing. So it's not too hard to rip all that part out of YaST and create a standalone program from it.

    For the NCurses UI, the NCPackageSelector / NCPatternSelector create a lot of libyui widgets (inheriting YWidget / NCWidget) and use a lot of libyui calls to glue them together; and all that of course still needs a lot of YaST / libyui / libyui-ncurses infrastructure. So NCurses is out of scope here.

    Preparatory Work: Initializing the Package Subsystem

    To see if this is feasible at all, the existing UI examples needed some fixing to check what is needed on that level. That was the make-or-break decision: Would it be realistically possible to set the needed environment in libzypp up (without being stranded in the middle of that task alone at the end of the hack week)?

    Yes, it is: That part is already working:

    https://github.com/yast/yast-ycp-ui-bindings/pull/71


    New KDE Plasma notification app/applet by apappas

    Description

    My memory is terrible so I depend a lot on notifications to carry me through the workday. As a plasma user I am ok with the current applet, but I don't love it. It is too small for the centrality it has in my day. Also I dislike how you can not go back to notifications you have dismissed

    Goals

    Develop a plasma app that * must gather notifications without disrupting the existing notification app * must offer the ablity to refer to dismissed/archived/seen notification up to some defined point in the past * must allow deletion of notifications


    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v


    Port some classic game to Linux by MDoucha

    Let's pick some old classic game, reverse engineer the data formats and game rules and write an open source engine for it from scratch. Some games from 1990s are simple enough that we could have a playable prototype by the end of the week.

    Write which games you'd like to hack on in the comments. Don't forget to check e.g. on Open Source Game Clones, Github and SourceForge whether the game is ported already.

    Hack Week 24 - Master of Orion II: Battle at Antares & Chaos Overlords

    Work on Master of Orion II continues but we can hack more than one game. Chaos Overlords is a dystopian, lighthearted, cyberpunk turn-based strategy game originally released in 1996 for Windows 95 and Mac OS. The player takes on the role of a Chaos Overlord, attempting to control a city. Gameplay involves hiring mercenary gangs and deploying them on an 8-by-8 grid of city sectors to generate income, occupy sectors and take over the city.

    How to ~~install & play~~ observe the decompilation progress:

    • Clone the Git repository
    • A playable reimplementation does not exist yet, but when it does, it will be linked in the repository mentioned above.

    Further work needed:

    • Analyze the remaining unknown data structures, most of which are related to the AI.
    • Decompile the AI completely. The strong AI is part of the appeal of the game. It cannot be left out.
    • Reimplement the game.

    Hack Week 20, 21, 22 & 23 - Master of Orion II: Battle at Antares

    Master of Orion II is one of the greatest turn-based 4X games of the 1990s. Explore the galaxy, colonize planets, research new technologies, fight space monsters and alien empires and in the end, become the ruler of the galaxy one way or another.

    How to install & play:

    • Clone the Git repository
    • Run ./bootstrap; ./configure; make && make install
    • Copy all *.LBX files from the original Master of Orion II to the installation data directory (/usr/local/share/openorion2 by default)
    • Run openorion2

    Further work needed:

    • Analyze the rest of the original savegame format and a few remaining data files.
    • Implement most of the game. The open source engine currently supports only loading saved games from the original version and viewing the galaxy map, fleet management and list of known planets.

    Hack Week 19 - Signus: The Artifact Wars

    Signus is a Czech turn-based strategy game similar to Panzer General or Battle Isle series. Originally published in 1998 and open-sourced by the original developers in 2003.

    How to install & play:

    • Clone the Git repository
    • Run ./bootstrap; ./configure; make && make install in both signus and signus-data directories.
    • Run signus

    Further work needed:

    • Create openSUSE package
    • Implement full support for original game data (the open source version uses slightly different data file contents but original game data can be converted using a script).