Project Description

Make possible to notify a about node draining and rebooting (using kured reboot sentinel).

Goal for this Hackweek

Get familiar with spacewalk api and notification-related code. Try to implement a feature to trigger a custom notification from spacewalk api.

Resources

https://github.com/weaveworks/kured

https://github.com/containrrr/shoutrrr

https://github.com/SUSE/spacewalk

Looking for hackers with the skills:

kubernetes notification suma susemanager rke2 kured spacewalk

This project is part of:

Hack Week 20

Activity

  • almost 4 years ago: dleidi liked this project.
  • almost 4 years ago: atighineanu started this project.
  • almost 4 years ago: atighineanu added keyword "kubernetes" to this project.
  • almost 4 years ago: atighineanu added keyword "notification" to this project.
  • almost 4 years ago: atighineanu added keyword "suma" to this project.
  • almost 4 years ago: atighineanu added keyword "susemanager" to this project.
  • almost 4 years ago: atighineanu added keyword "rke2" to this project.
  • almost 4 years ago: atighineanu added keyword "kured" to this project.
  • almost 4 years ago: atighineanu added keyword "spacewalk" to this project.
  • almost 4 years ago: atighineanu originated this project.

  • Comments

    • pagarcia
      almost 4 years ago by pagarcia | Reply

      It would be cool to e. g. receive on MS Teams the notifications Uyuni currently sends via e-mail or the notification "inbox". Even cooler if you could react to that: Uyuni: "hey @atighineanu , 23 clients are impacted by CVE-1234-5678" atighineanu: "patch now" Uyuni: "10 SLES 12 SP4, 7 SLES 15 SP2, 3 CentOS 7, 2 Ubuntu 18.04 and 1 CentOS 8 have been scheduled to be patched"

      Uyuni: "client X, Y and Z running SLES 12 SP4 have been successfully patched. 20 clients in progres" ...

    • pagarcia
      almost 4 years ago by pagarcia | Reply

      It would be cool to e. g. receive on MS Teams the notifications Uyuni currently sends via e-mail or the notification "inbox".

      Even cooler if you could react to that:

      Uyuni: "hey @atighineanu , 23 clients are impacted by CVE-1234-5678"

      atighineanu: "patch now"

      Uyuni: "10 SLES 12 SP4, 7 SLES 15 SP2, 3 CentOS 7, 2 Ubuntu 18.04 and 1 CentOS 8 have been scheduled to be patched"

      Uyuni: "client X, Y and Z running SLES 12 SP4 have been successfully patched. 20 clients in progres" ...

    Similar Projects

    kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia

    Description

    kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.

    Goals

    1. Seamless Multi-Cluster Cloning
      • Clone Kubernetes resources across clusters/projects with one command.
      • Simplifies management, reduces operational effort.

    Resources

    1. Rancher & Kubernetes Docs

      • Rancher API, Cluster Management, Kubernetes client libraries.
    2. Development Tools

      • Kubectl plugin docs, Go programming resources.

    Building and Installing the Plugin

    1. Set Environment Variables: Export the Rancher URL and API token:
    • export RANCHER_URL="https://rancher.example.com"
    • export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
    1. Build the Plugin: Compile the Go program:
    • go build -o kubectl-clone ./pkg/
    1. Install the Plugin: Move the executable to a directory in your PATH:
    • mv kubectl-clone /usr/local/bin/

    Ensure the file is executable:

    • chmod +x /usr/local/bin/kubectl-clone
    1. Verify the Plugin Installation: Test the plugin by running:
    • kubectl clone --help

    You should see the usage information for the kubectl-clone plugin.

    Usage Examples

    1. Clone a Deployment from One Cluster to Another:
    • kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
    1. Clone a Service into Another Namespace and Modify Labels:


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Small healthcheck tool for Longhorn by mbrookhuis

    Project Description

    We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

    As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

    This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

    Goal for this Hackweek

    At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

    Overview

    This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

    • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

    • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

    • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

    If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

    The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

    The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

    Installation

    To install this project, perform the following steps:

    • Create the directory /opt/k8s-check

    mkdir /opt/k8s-check

    • Copy all the file to this directory and make the following changes:

    chmod +x k8s-check.py


    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goal for this Hackweek

    Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up


    New KDE Plasma notification app/applet by apappas

    Description

    My memory is terrible so I depend a lot on notifications to carry me through the workday. As a plasma user I am ok with the current applet, but I don't love it. It is too small for the centrality it has in my day. Also I dislike how you can not go back to notifications you have dismissed

    Goals

    Develop a plasma app that * must gather notifications without disrupting the existing notification app * must offer the ablity to refer to dismissed/archived/seen notification up to some defined point in the past * must allow deletion of notifications


    Build Edge Image Builder ISO with SUSE Manager by mweiss2

    Description

    With SUSE Manager, we can build OS Images using KIWI and container images. As we have Edge Image Builder, we want to see if it is possible to use SUSE Manager to build/customize OS Images by integrating Edge Image Builder as well.

    Goals

    To make the process easier for customers, a single-build pipeline that automatically adds the combustion and artifact files from the EIB process is desirable.

    • Kiwi and EIB need to come from a Git Repository.
    • Kiwi and EIB need to be running as containers.
    • Configuration options for the images used for Kiwi and EIB build.
    • X86 and ARM64 Support.
    • SUSE Manager 4.3 and 5.X Support.
    • SLES 15 SP6 / SL Micro 6.0 and SL Micro 6.1 Support.

    Outcome

    • Change the Kiwi build process to use Podman with the Kiwi image registry.suse.com/bci/kiwi:10.1.10
    • Change the Edge Image Builder to produce a combustion-only ISO
    • Extract the contents and write them to a dedicated /OEM partition integrated via Kiwi into the ISO Kiwi creates.

    Sources and PRs

    • https://github.com/Martin-Weiss/kiwi-image-micro-gpu-60
    • https://github.com/suse-edge/edge-image-builder/pull/618
    • https://github.com/uyuni-project/uyuni/pull/9507


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).
    • [W] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [I] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?
    • [W] Applying any basic salt state (including a formula)
    • [W] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    Create SUSE Manager users from ldap/ad groups by mbrookhuis

    Description

    This tool is used to create users in SUSE Manager Server based on LDAP/AD groups. For each LDAP/AD group a role within SUSE Manager Server is defined. Also, the tool will check if existing users still have the role they should have, and, if not, it will be corrected. The same for if a user is disabled, it will be enabled again. If a users is not present in the LDAP/AD groups anymore, it will be disabled or deleted, depending on the configuration.

    The code is written for Python 3.6 (the default with SLES15.x), but will also work with newer versions. And works against SUSE Manger 4.3 and 5.x

    Goals

    Create a python and/or golang utility that will manage users in SUSE Manager based on LDAP/AD group-membership. In a configuration file is defined which roles the members of a group will get.

    Table of contents

    Installation

    To install this project, perform the following steps:

    • Be sure that python 3.6 is installed and also the module python3-PyYAML. Also the ldap3 module is needed:

    bash zypper in python3 python3-PyYAML pip install yaml

    • On the server or PC, where it should run, create a directory. On linux, e.g. /opt/sm-ldap-users

    • Copy all the file to this directory.

    • Edit the configsm.yaml. All parameters should be entered. Tip: for the ldap information, the best would be to use the same as for SSSD.

    • Be sure that the file sm-ldap-users.py is executable. It would be good to change the owner to root:root and only root can read and execute:

    bash chmod 600 * chmod 700 sm-ldap-users.py chown root:root *

    Usage

    This is very simple. Once the configsm.yaml contains the correct information, executing the following will do the magic:

    bash /sm-ldap-users.py

    repository link

    https://github.com/mbrookhuis/sm-ldap-users


    Saline (state deployment control and monitoring tool for SUSE Manager/Uyuni) by vizhestkov

    Project Description

    Saline is an addition for salt used in SUSE Manager/Uyuni aimed to provide better control and visibility for states deploymend in the large scale environments.

    In current state the published version can be used only as a Prometheus exporter and missing some of the key features implemented in PoC (not published). Now it can provide metrics related to salt events and state apply process on the minions. But there is no control on this process implemented yet.

    Continue with implementation of the missing features and improve the existing implementation:

    • authentication (need to decide how it should be/or not related to salt auth)

    • web service providing the control of states deployment

    Goal for this Hackweek

    • Implement missing key features

    • Implement the tool for state deployment control with CLI

    Resources

    https://github.com/openSUSE/saline