Project Description

Write a userland tool, to utilize the netlink interface of the of the mac80211_hwsim kernel driver.

Goal for this Hackweek

  • create and destroy phy's dynamically
  • set cipher and key-mgmt capabilities
  • learn Rust

Resources

  • https://github.com/torvalds/linux/blob/master/drivers/net/wireless/mac80211_hwsim.c
  • https://www.kernel.org/doc/html/latest/networking/mac80211hwsim/mac80211hwsim.html
  • https://linuxembedded.fr/2021/01/emulating-wlan-in-linux-part-ii-mac80211hwsim

Looking for hackers with the skills:

rust kernel

This project is part of:

Hack Week 21

Activity

  • over 3 years ago: jzerebecki left this project.
  • over 3 years ago: jzerebecki added keyword "rust" to this project.
  • over 3 years ago: jzerebecki added keyword "kernel" to this project.
  • over 3 years ago: jzerebecki joined this project.
  • over 3 years ago: jzerebecki liked this project.
  • over 3 years ago: cfconrad started this project.
  • over 3 years ago: cfconrad originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Mail client with mailing list workflow support in Rust by acervesato

    Description

    To create a mail user interface using Rust programming language, supporting mailing list patches workflow. I know, aerc is already there, but I would like to create something simpler, without integrated protocols. Just a plain user interface that is using some crates to read and create emails which are fetched and sent via external tools.

    I already know Rust, but not the async support, which is needed in this case in order to handle events inside the mail folder and to send notifications.

    Goals

    • simple user interface in the style of aerc, with some vim keybindings for motions and search
    • automatic run of external tools (like mbsync) for checking emails
    • automatic run commands for notifications
    • apply patch set from ML
    • tree-sitter support with styles

    Resources

    • ratatui: user interface (https://ratatui.rs/)
    • notify: folder watcher (https://docs.rs/notify/latest/notify/)
    • mail-parser: parser for emails (https://crates.io/crates/mail-parser)
    • mail-builder: create emails in proper format (https://docs.rs/mail-builder/latest/mail_builder/)
    • gitpatch: ML support (https://crates.io/crates/gitpatch)
    • tree-sitter-rust: support for mail format (https://crates.io/crates/tree-sitter)


    Arcticwolf - A rust based user space NFS server by vcheng

    Description

    Rust has similar performance to C. Also, have a better async IO module and high integration with io_uring. This project aims to develop a user-space NFS server based on Rust.

    Goals

    • Get an understanding of how cargo works
    • Get an understanding of how XDR was generated with xdrgen
    • Create the RUST-based NFS server that supports basic operations like mount/readdir/read/write

    Result (2025 Hackweek)

    • In progress PR: https://github.com/Vicente-Cheng/arcticwolf/pull/1

    Resources

    https://github.com/Vicente-Cheng/arcticwolf


    OpenPlatform Self-Service Portal by tmuntan1

    Description

    In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.

    To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.

    Goals

    • Build a frontend website (Angular) that helps customers create Jira SD tickets.
    • Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.

    Resources (SUSE VPN only)

    • development site: https://ui-dev.openplatform.suse.com/login?returnUrl=%2Fopenplatform%2Fforms
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/backend
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/frontend


    Looking at Rust if it could be an interesting programming language by jsmeix

    Get some basic understanding of Rust security related features from a general point of view.

    This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.

    The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.

    An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.


    RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso

    Description

    The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.

    We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.

    This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.

    The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.

    Goals

    The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.

    Key goals for the week:

    1. Analyze & Identify: Dive into the SUSE/rmt Ruby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions).
    2. Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
    3. Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like rb-sys or magnus.
    4. Benchmark: Create a benchmarking script (e.g., using k6, ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients.
    5. Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.

    Resources

    • RMT Source Code (Ruby):
      • https://github.com/SUSE/rmt
    • RMT Documentation:
      • https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
    • Tooling & Stacks:
      • RMT/Ruby development environment (for running the base RMT)
      • Rust development environment (rustup, cargo)
    • Potential Integration Libraries:
      • rb-sys: https://github.com/oxidize-rb/rb-sys
      • Magnus: https://github.com/matsadler/magnus
    • Benchmarking Tools:
      • k6 (https://k6.io/)
      • ab (ApacheBench)


    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    dynticks-testing: analyse perf / trace-cmd output and aggregate data by m.crivellari

    Description

    dynticks-testing is a project started years ago by Frederic Weisbecker. One of the feature is to check the actual configuration (isolcpus, irqaffinity etc etc) and give feedback on it.

    An important goal of this tool is to parse the output of trace-cmd / perf and provide more readable data, showing the duration of every events grouped by PID (showing also the CPU number, if the tasks has been migrated etc).

    An example of data captured on my laptop (incomplete!!):

              -0     [005] dN.2. 20310.270699: sched_wakeup:         WaylandProxy:46380 [120] CPU:005
              -0     [005] d..2. 20310.270702: sched_switch:         swapper/5:0 [120] R ==> WaylandProxy:46380 [120]
    ...
        WaylandProxy-46380 [004] d..2. 20310.295397: sched_switch:         WaylandProxy:46380 [120] S ==> swapper/4:0 [120]
              -0     [006] d..2. 20310.295397: sched_switch:         swapper/6:0 [120] R ==> firefox:46373 [120]
             firefox-46373 [006] d..2. 20310.295408: sched_switch:         firefox:46373 [120] S ==> swapper/6:0 [120]
              -0     [004] dN.2. 20310.295466: sched_wakeup:         WaylandProxy:46380 [120] CPU:004
    

    Output of noise_parse.py:

    Task: WaylandProxy Pid: 46380 cpus: {4, 5} (Migrated!!!)
            Wakeup Latency                                Nr:        24     Duration:          89
            Sched switch: kworker/12:2                    Nr:         1     Duration:           6
    

    My first contribution is around Nov. 2024!

    Goals

    • add more features (eg cpuset)
    • test / bugfix

    Resources

    Progresses

    isolcpus and cpusets implemented and merged in master: dynticks-testing.git commit


    Add Qualcomm Snapdragon 765G (SM7250) basic device tree to mainline linux kernel by pvorel

    Qualcomm Snapdragon 765G (SM7250) (smartphone SoC) has no support in the linux kernel, nor in u-boot. Try to add basic device tree support. The hardest part will be to create boot.img which will be accepted by phone.

    UART is available for smartphone :).


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/

    update HW25

    • Day 1
      • rebased crash-kernel on v6.12.59 (for now), still crashing


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter