Description

This project aims to explore the popularity and developer sentiment around SUSE and its technologies compared to Red Hat and their technologies. Using publicly available data sources, I will analyze search trends, developer preferences, repository activity, and media presence. The final outcome will be an interactive Power BI dashboard that provides insights into how SUSE is perceived and discussed across the web and among developers.

Goals

  1. Assess the popularity of SUSE products and brand compared to Red Hat using Google Trends.
  2. Analyze developer satisfaction and usage trends from the Stack Overflow Developer Survey.
  3. Use the GitHub API to compare SUSE and Red Hat repositories in terms of stars, forks, contributors, and issue activity.
  4. Perform sentiment analysis on GitHub issue comments to measure community tone and engagement using built-in Copilot capabilities.
  5. Perform sentiment analysis on Reddit comments related to SUSE technologies using built-in Copilot capabilities.
  6. Use Gnews.io to track and compare the volume of news articles mentioning SUSE and Red Hat technologies.
  7. Test the integration of Copilot (AI) within Power BI for enhanced data analysis and visualization.
  8. Deliver a comprehensive Power BI report summarizing findings and insights.
  9. Test the full potential of Power BI, including its AI features and native language Q&A.

Resources

  1. Google Trends: Web scraping for search popularity data
  2. Stack Overflow Developer Survey: For technology popularity and satisfaction comparison
  3. GitHub API: For repository data (stars, forks, contributors, issues, comments).
  4. Gnews.io API: For article volume and mentions analysis.
  5. Reddit: SUSE related topics with comments.

Looking for hackers with the skills:

ai marketing powerbi analysis copilot trend github reddit

This project is part of:

Hack Week 25

Activity

  • 2 days ago: terezacerna added keyword "copilot" to this project.
  • 2 days ago: terezacerna added keyword "trend" to this project.
  • 2 days ago: terezacerna added keyword "github" to this project.
  • 2 days ago: terezacerna added keyword "reddit" to this project.
  • 2 days ago: terezacerna added keyword "ai" to this project.
  • 2 days ago: terezacerna added keyword "marketing" to this project.
  • 2 days ago: terezacerna added keyword "powerbi" to this project.
  • 2 days ago: terezacerna added keyword "analysis" to this project.
  • 10 days ago: katiarojas liked this project.
  • 11 days ago: terezacerna disliked this project.
  • 11 days ago: terezacerna liked this project.
  • 19 days ago: horon liked this project.
  • about 1 month ago: terezacerna started this project.
  • about 1 month ago: terezacerna originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources


    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback
    • Cluster Autoscaler scales nodes up/down as needed
    • Fleet keeps everything in sync via GitOps

    Goals


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.


    Gemini-Powered Socratic Bug Evaluation and Management Assistant by rtsvetkov

    Description

    To build a tool or system that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic path (e.g., from symptom-> context -> assumptions -> root cause).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."

    Resources


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html https://build.opensuse.org/project/show/science:GPU:ROCm https://src.opensuse.org/ROCm/


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The Outputs

    ❥ A "State of the Agentic Union" for SUSE engineers, detailing what works, what explodes, and how much coffee we can drink while the robots do the rebasing.

    ❥ Honest, Daily Updates With All the Gory Details