Project Description

Currently, the way to install Rancher in Air-Gap mode (with personal registry server) is using the rancher-save/load-images.sh script to save container images required by Rancher into tar.gz tarball and load it into the personal registry. These scripts work fine when saving and loading single-arch images.

However, if we need to install Rancher cluster in AMD64 and ARM64 architecture, we need a tool to mirror multi-arch images from public registry to personal registry or save images into tarball and load it into personal registry (when no network connection). So this project is mainly used to mirror/save and load multi-arch container images from the public registry to the personal registry (by using skopeo) and build manifest list (by using docker-buildx). I also implemented validating functions to ensure all container images were mirrored/loaded into the destination registry.


Currently, this project has already finished the mirror/load/save and validation functions, and I am developing the new functions to generate an upgrade image list from KDM JSON data and chart repos during this HackWeek.

This tool is written in Go and the compiled binary file can be found on the GitHub Release page. And this tool also provides container image for mirror images in CI pipeline automatically.

Goal for this Hackweek

Here are the things I'm going to do during HackWeek 22.

  1. Implement the functions of generating an image list from KDM JSON data and chart repos.
  2. Add English documents for this project.

Resources

  1. image-tools:
  2. skopeo:
  3. KDM (kontainer-driver-metadata):
  4. Collect and Publish Images to your Private Registry:

Looking for hackers with the skills:

rancher containers skopeo kdm

This project is part of:

Hack Week 22

Activity

  • about 2 years ago: danishprakash joined this project.
  • about 2 years ago: paulgonin liked this project.
  • about 2 years ago: danishprakash liked this project.
  • about 2 years ago: StarryWang started this project.
  • about 2 years ago: StarryWang liked this project.
  • about 2 years ago: StarryWang added keyword "rancher" to this project.
  • about 2 years ago: StarryWang added keyword "containers" to this project.
  • about 2 years ago: StarryWang added keyword "skopeo" to this project.
  • about 2 years ago: StarryWang added keyword "kdm" to this project.
  • about 2 years ago: StarryWang originated this project.

  • Comments

    • StarryWang
      about 2 years ago by StarryWang | Reply

      The generate-list sub-command is available in the v1.4.0-rc2

      I'll make a final release when it becomes stable after this hackweek.


      English docs have been supplemented by @danishprakash .

    • StarryWang
      about 2 years ago by StarryWang | Reply

      Name needed: the name of this project image-tools is not good enough, can someone help me with a more interesting name of this project?

    • StarryWang
      about 2 years ago by StarryWang | Reply

      Just released 1.4.0-rc3 and made some improvements on the generate-list sub-command, this HackWeek project can be marked as finished.

    Similar Projects

    Rancher microfrontend extensions by ftorchia

    Description

    Rancher UI Extensions allow users, developers, partners, and customers to extend and enhance the Rancher UI. Extensions are Helm charts that can only be installed once into a cluster. The charts contain a UI built package that is downloaded and linked to the Host UI at runtime; this means that the extension pkg needs to be implemented using the same technology and have the same APIs as Rancher UI.

    Goals

    We want to create a new type of Rancher extension, based on microfrontend pattern. The extension is served in a docker container in the k8s clusters and embedded in the host UI; this would guarantee us to be able to create extensions unrelated to the rancher UI architecture, in any technology.

    Non Goals

    We want to apply the microfrontend pattern to the product-level extensions; we don't want to apply it to cluster-level extensions.

    Resources

    rancher-extension-microfrontend, Rancher extensions


    Enabling Rancher as an OIDC Provider by rcabello

    Description

    Kubernetes supports OpenID Connect (OIDC) natively as an authentication mechanism, enabling token-based user authentication. This can be configured through flags in the Kubernetes API server or by using AuthenticationConfiguration.

    The purpose of this project is to enable Rancher to function as an OIDC provider, allowing Rancher's local cluster to act as an OIDC identity provider for downstream clusters. This setup will allow users to authenticate directly with downstream clusters without relying on Rancher’s proxy and impersonation mechanisms.

    Rancher will continue to support all authentication providers. When a user attempts to log in via the Rancher OIDC provider, they will be redirected to the authentication provider configured in Rancher.

    This approach also facilitates integration with third-party tools (e.g StackState)

    Goals

    • Implement Rancher as an OIDC provider using the ORY Fosite library, focusing only on the essential functionality required for basic integration.
    • Enable downstream clusters to authenticate using JWT tokens issued by Rancher.
    • Configure StackState to authenticate using Rancher as an OIDC provider.

    Resources

    https://github.com/ory/fosite


    Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz

    Description

    As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.

    Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.

    Goals

    • Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
    • Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
    • Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.

    Resources

    Core concepts:

    • ConfigMaps: Bottles could be defined and configured using ConfigMaps.
    • Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
    • Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.


    Longhorn UI Extension (POC) by yiya.chen

    Description

    The goal is to create a Longhorn UI extension within Rancher using existing resources.
    Longhorn’s UI is built using React, while Rancher’s UI extensions are built using Vue. Developers will explore different approaches to integrate and extend Longhorn’s UI within Rancher’s Vue-based ecosystem, aiming to create a seamless, functional UI extension.

    Goals

    • Build a Longhorn UI extension (look and feel)
    • Support theme switching to align with Rancher’s UI

    Results

    • https://github.com/a110605/longhorn-hackday
    • https://github.com/a110605/longhorn-ui/tree/darkmode
    • https://github.com/houhoucoop/hackweek/tree/main/hackweek24

    Resources

    • Longhorn UI: https://github.com/longhorn/longhorn-ui
    • Rancher UI Extension: https://extensions.rancher.io/extensions/next/home
    • darkreader: https://www.npmjs.com/package/darkreader
    • veaury: https://github.com/gloriasoft/veaury
    • module federation: https://webpack.js.org/concepts/module-federation/


    A CLI for Harvester by mohamed.belgaied

    [comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Port the classic browser game HackTheNet to PHP 8 by dgedon

    Description

    The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.

    Goals

    • Port the game to PHP 8 and MariaDB 11
    • Create a container where the game server can simply be started/stopped

    Resources

    • https://github.com/nodeg/hackthenet


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Enable the containerized Uyuni server to run on different host OS by j_renner

    Description

    The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:

    • openSUSE Leap
    • Cent OS 7
    • Ubuntu
    • ???

    Goals

    Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).