an invention by StarryWang
Project Description
Currently, the way to install Rancher in Air-Gap mode (with personal registry server) is using the rancher-save/load-images.sh
script to save container images required by Rancher into tar.gz
tarball and load it into the personal registry. These scripts work fine when saving and loading single-arch images.
However, if we need to install Rancher cluster in AMD64 and ARM64 architecture, we need a tool to mirror multi-arch images from public registry to personal registry or save images into tarball and load it into personal registry (when no network connection). So this project is mainly used to mirror/save and load multi-arch container images from the public registry to the personal registry (by using skopeo) and build manifest list (by using docker-buildx). I also implemented validating functions to ensure all container images were mirrored/loaded into the destination registry.
Currently, this project has already finished the mirror/load/save and validation functions, and I am developing the new functions to generate an upgrade image list from KDM JSON data and chart repos during this HackWeek.
This tool is written in Go and the compiled binary file can be found on the GitHub Release page. And this tool also provides container image for mirror images in CI pipeline automatically.
Goal for this Hackweek
Here are the things I'm going to do during HackWeek 22.
- Implement the functions of generating an image list from KDM JSON data and chart repos.
- Add English documents for this project.
Resources
- image-tools:
- skopeo:
- KDM (kontainer-driver-metadata):
- Collect and Publish Images to your Private Registry:
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
-
about 2 years ago by StarryWang | Reply
The
generate-list
sub-command is available in the v1.4.0-rc2I'll make a final release when it becomes stable after this hackweek.
English docs have been supplemented by @danishprakash .
-
about 2 years ago by StarryWang | Reply
Name needed: the name of this project
image-tools
is not good enough, can someone help me with a more interesting name of this project? -
about 2 years ago by StarryWang | Reply
Just released 1.4.0-rc3 and made some improvements on the
generate-list
sub-command, this HackWeek project can be marked as finished.
Similar Projects
A CLI for Harvester by mohamed.belgaied
[comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01
to my-vm-05
.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go
the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
Longhorn UI Extension (POC) by yiya.chen
Description
The goal is to create a Longhorn UI extension within Rancher using existing resources.
Longhorn’s UI is built using React, while Rancher’s UI extensions are built using Vue. Developers will explore different approaches to integrate and extend Longhorn’s UI within Rancher’s Vue-based ecosystem, aiming to create a seamless, functional UI extension.
Goals
- Build a Longhorn UI extension (look and feel)
- Support theme switching to align with Rancher’s UI
Results
- https://github.com/a110605/longhorn-hackday
- https://github.com/a110605/longhorn-ui/tree/darkmode
- https://github.com/houhoucoop/hackweek/tree/main/hackweek24
Resources
- Longhorn UI: https://github.com/longhorn/longhorn-ui
- Rancher UI Extension: https://extensions.rancher.io/extensions/next/home
- darkreader: https://www.npmjs.com/package/darkreader
- veaury: https://github.com/gloriasoft/veaury
- module federation: https://webpack.js.org/concepts/module-federation/
Enabling Rancher as an OIDC Provider by rcabello
Description
Kubernetes supports OpenID Connect (OIDC) natively as an authentication mechanism, enabling token-based user authentication. This can be configured through flags in the Kubernetes API server or by using AuthenticationConfiguration.
The purpose of this project is to enable Rancher to function as an OIDC provider, allowing Rancher's local cluster to act as an OIDC identity provider for downstream clusters. This setup will allow users to authenticate directly with downstream clusters without relying on Rancher’s proxy and impersonation mechanisms.
Rancher will continue to support all authentication providers. When a user attempts to log in via the Rancher OIDC provider, they will be redirected to the authentication provider configured in Rancher.
This approach also facilitates integration with third-party tools (e.g StackState)
Goals
- Implement Rancher as an OIDC provider using the ORY Fosite library, focusing only on the essential functionality required for basic integration.
- Enable downstream clusters to authenticate using JWT tokens issued by Rancher.
- Configure StackState to authenticate using Rancher as an OIDC provider.
Resources
https://github.com/ory/fosite
CVE portal for SUSE Rancher products by gmacedo
Description
Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.
Goals
The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.
It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.
Resources
- The page must be simple and easy to read.
- The UI/UX must be as straightforward as possible with minimal visual noise.
- The content must be created automatically from the raw data that we already have internally.
- It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
- The CVE status must be aligned with VEX.
- The raw data must be exportable as CSV file.
- Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.
Rancher microfrontend extensions by ftorchia
Description
Rancher UI Extensions allow users, developers, partners, and customers to extend and enhance the Rancher UI. Extensions are Helm charts that can only be installed once into a cluster. The charts contain a UI built package that is downloaded and linked to the Host UI at runtime; this means that the extension pkg needs to be implemented using the same technology and have the same APIs as Rancher UI.
Goals
We want to create a new type of Rancher extension, based on microfrontend pattern. The extension is served in a docker container in the k8s clusters and embedded in the host UI; this would guarantee us to be able to create extensions unrelated to the rancher UI architecture, in any technology.
Non Goals
We want to apply the microfrontend pattern to the product-level extensions; we don't want to apply it to cluster-level extensions.
Resources
rancher-extension-microfrontend, Rancher extensions
Enable the containerized Uyuni server to run on different host OS by j_renner
Description
The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:
- openSUSE Leap
- Cent OS 7
- Ubuntu
- ???
Goals
Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Technical talks at universities by agamez
Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.