Project Description
Network management is very important for cloud and Edge. CNF(cloud-native network function) is next-generation VNF. CNF will be supported in Edge computing in the future. It is very important specially in 5G network. A cloud-native 5G network provides the completely digitized platform necessary to deploy new cloud services and to take advantage of cloud-native 5G benefits like massive IoT, edge computing, and network slicing. Cloud Native Network Functions will ultimately help operators pivot from Non-standlone (NSA) 5G architecture which depends on a 4G core network to operate, to standalone (SA) 5G. Standalone 5G pairs 5G radios with a cloud-native 5G core network. We would like to build a demo network based on K8S.
Goal for this Hackweek
- prepare environment for CNF demo
- build K8s cloud
- build a demo of the CNF
- Change source code and document
Resources
comment: # https://github.com/cncf/cnf-testsuite/
comment: # https://github.com/cncf/cnf-testbed/
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
-
almost 2 years ago by epenchev | Reply
This looks an interesting POC from RedHat https://www.redhat.com/architect/autoscale-5g-core, and they shared the knowledge as well https://github.com/fenar/cnvopen5gcore/tree/Release-1.0 . It's based on open5gs (https://github.com/open5gs/open5gs) for the 5G CNF, Istio for service mesh and UERANSIM for 5G UE and RAN simulator. Although it's applied and configured to run on RedHat Openshift I think it will be cool to have something like this on Rancher as well.
-
almost 2 years ago by lizhang | Reply
For network stack, here is the reference. For performance of network, SRIOV, DPDK should be used. For vswitch, VPP has much better performance then OVS. https://ligato.io/blog/cnf-ligato-fdio/ https://cloud.redhat.com/blog/building-cnf-applications-with-openshift-pipelines
Similar Projects
Improve Development Environment on Uyuni by mbussolotto
Description
Currently create a dev environment on Uyuni might be complicated. The steps are:
- add the correct repo
- download packages
- configure your IDE (checkstyle, format rules, sonarlint....)
- setup debug environment
- ...
The current doc can be improved: some information are hard to be find out, some others are completely missing.
Dev Container might solve this situation.
Goals
Uyuni development in no time:
- using VSCode:
- setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
- dev container should contains all dependencies
- setup debug environment
- implement a GitHub Workspace solution
- re-write documentation
Lots of pieces are already implemented: we need to connect them in a consistent solution.
Resources
- https://github.com/uyuni-project/uyuni/wiki
Port the classic browser game HackTheNet to PHP 8 by dgedon
Description
The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.
Goals
- Port the game to PHP 8 and MariaDB 11
- Create a container where the game server can simply be started/stopped
Resources
- https://github.com/nodeg/hackthenet
Enable the containerized Uyuni server to run on different host OS by j_renner
Description
The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:
- openSUSE Leap
- Cent OS 7
- Ubuntu
- ???
Goals
Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Build Edge Image Builder ISO with SUSE Manager by mweiss2
Description
With SUSE Manager, we can build OS Images using KIWI and container images. As we have Edge Image Builder, we want to see if it is possible to use SUSE Manager to build/customize OS Images by integrating Edge Image Builder as well.
Goals
To make the process easier for customers, a single-build pipeline that automatically adds the combustion and artifact files from the EIB process is desirable.
- Kiwi and EIB need to come from a Git Repository.
- Kiwi and EIB need to be running as containers.
- Configuration options for the images used for Kiwi and EIB build.
- X86 and ARM64 Support.
- SUSE Manager 4.3 and 5.X Support.
- SLES 15 SP6 / SL Micro 6.0 and SL Micro 6.1 Support.
Outcome
- Change the Kiwi build process to use Podman with the Kiwi image registry.suse.com/bci/kiwi:10.1.10
- Change the Edge Image Builder to produce a combustion-only ISO
- Extract the contents and write them to a dedicated /OEM partition integrated via Kiwi into the ISO Kiwi creates.
Sources and PRs
- https://github.com/Martin-Weiss/kiwi-image-micro-gpu-60
- https://github.com/suse-edge/edge-image-builder/pull/618
- https://github.com/uyuni-project/uyuni/pull/9507
Edge Image Builder and mkosi for Uyuni by oholecek
Description
One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.
Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.
Goals
Uyuni is able to
- provision EIB and mkosi build hosts
- build EIB and mkosi images and store them
Resources
- Uyuni - https://github.com/uyuni-project/uyuni
- Edge Image builder - https://github.com/suse-edge/edge-image-builder
- mkosi - https://github.com/systemd/mkosi
Small healthcheck tool for Longhorn by mbrookhuis
Project Description
We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.
As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.
This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.
Goal for this Hackweek
At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.
Overview
This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:
node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems
deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.
pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.
If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.
The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.
The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.
Installation
To install this project, perform the following steps:
- Create the directory /opt/k8s-check
mkdir /opt/k8s-check
- Copy all the file to this directory and make the following changes:
chmod +x k8s-check.py