Project Description

Over the years, our bugzilla database has grown up in size, becoming a very valuable source of truth for most support and development cases; still searching for specific items is quite tricky and the results do not always match the expectations.

What about feeding a Maching Learning platform with the Bugzilla Database, in order to be able to query it through AI interface? Wouldn't it be nice/convenient to ask to AI: "Gimme hints about this kernel dump!" or "What is the root cause of this stack trace?"

It is the age of choice in the end, isn't it?

Goal for this Hackweek

For this Hackweek, the focus is to trigger a discussion on the following non-exhaustive list:

  • What are the boundaries to be set when considering such an approach (legal, ethical, technological, whatever)
  • How much of the Bugzilla DB can be used for feeding ML? ( can we use customer's data? what about partner's data?)
  • Find out an open source ML solution fitting our needs;
  • Find out some hardware where the solution can be eventually run on.

Anyone interested can join the discussion on the open Slack channel #discuss-bugzilla-ai

Resources

[1] https://blog.opensource.org/towards-a-definition-of-open-artificial-intelligence-first-meeting-recap/

Looking for hackers with the skills:

ai machinelearning machine-learning bugzilla support

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: wfrisch liked this project.
  • about 1 year ago: jmodak liked this project.
  • about 1 year ago: cxiong liked this project.
  • about 1 year ago: lthadeus liked this project.
  • about 1 year ago: ygutierrez liked this project.
  • about 1 year ago: paolodepa added keyword "machine-learning" to this project.
  • about 1 year ago: paolodepa added keyword "bugzilla" to this project.
  • about 1 year ago: paolodepa added keyword "support" to this project.
  • about 1 year ago: paolodepa added keyword "ai" to this project.
  • about 1 year ago: paolodepa added keyword "machinelearning" to this project.
  • about 1 year ago: paolodepa originated this project.

  • Comments

    • paolodepa
      about 1 year ago by paolodepa | Reply

      Preliminary findings: talking to Amartya Chakraborty, who works to the Rancher AI project (https://github.com/rancher/opni), it seems that their framework can be attached to a Bugzilla instance for machine learning and pobably this will be explorated in the future

    • paolodepa
      about 1 year ago by paolodepa | Reply

      Preliminary finding: the Mozilla foundation is actively working on https://github.com/mozilla/bugbug, coming with very promising features: it's worth to try to setup an instance and feed it using our Bugzilla data.

    • paolodepa
      about 1 year ago by paolodepa | Reply

      Suspended due to flu: feel free to take-over

    • paolodepa
      about 1 year ago by paolodepa | Reply

      Postponed to upcoming hackweeks

    Similar Projects

    Research how LLMs could help to Linux developers and/or users by anicka

    Description

    Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.

    Goals

    • Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
    • Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
    • Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
    • Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
    • Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.

    Resources

    • Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
    • Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
    • Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
    • Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
    • Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
    • Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
    • Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Use AI tools to convert legacy perl scripts to bash by nadvornik

    Description

    Use AI tools to convert legacy perl scripts to bash

    Goals

    Uyuni project contains legacy perl scripts used for setup. The perl dependency could be removed, to reduce the container size. The goal of this project is to research use of AI tools for this task.

    Resources

    Aider

    Results:

    Aider is not the right tool for this. It works ok for small changes, but not for complete rewrite from one language to another.

    I got better results with direct API use from script.


    FamilyTrip Planner: A Personalized Travel Planning Platform for Families by pherranz

    Description

    FamilyTrip Planner is an innovative travel planning application designed to optimize travel experiences for families with children. By integrating APIs for flights, accommodations, and local activities, the app generates complete itineraries tailored to each family’s unique interests and needs. Recommendations are based on customizable parameters such as destination, trip duration, children’s ages, and personal preferences. FamilyTrip Planner not only simplifies the travel planning process but also offers a comprehensive, personalized experience for families.

    Goals

    This project aims to: - Create a user-friendly platform that assists families in planning complete trips, from flight and accommodation options to recommended family-friendly activities. - Provide intelligent, personalized travel itineraries using artificial intelligence to enhance travel enjoyment and minimize time and cost. - Serve as an educational project for exploring Go programming and artificial intelligence, with the goal of building proficiency in both.

    Resources

    To develop FamilyTrip Planner, the project will leverage: - APIs such as Skyscanner, Google Places, and TripAdvisor to source real-time information on flights, accommodations, and activities. - Go programming language to manage data integration, API connections, and backend development. - Basic machine learning libraries to implement AI-driven itinerary suggestions tailored to family needs and preferences.


    ghostwrAIter - a local AI assisted tool for helping with support cases by paolodepa

    Description

    This project is meant to fight the loneliness of the support team members, providing them an AI assistant (hopefully) capable of scraping supportconfigs in a RAG fashion, trying to answer specific questions.

    Goals

    • Setup an Ollama backend, spinning one (or more??) code-focused LLMs selected by license, performance and quality of the results between:
    • Setup a Web UI for it, choosing an easily extensible and customizable option between:
    • Extend the solution in order to be able to:
      • Add ZIU/Concord shared folders to its RAG context
      • Add BZ cases, splitted in comments to its RAG context
        • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query BZ
      • Add specific packages picking them from IBS repos
        • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query IBS
        • A plus would be to desume the packages of interest and the right channel and version to be picked from the added BZ cases