Machinery's system descriptions can contain files. These files are stored in the internal data format and are somewhere hidden in one of many tar balls. It's hard for users to access these files.
This project's goal to make use of FUSE in order to make these files easily accessible in the file system.
No Hackers yet
This project is part of:
Hack Week 12
Activity
Comments
Be the first to comment!
Similar Projects
Recipes catalog and calculator in Rails 8 by gfilippetti
My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.
TO DO
- Index page
- Product page
- Admin area -- Supplies calculator based on orders -- Orders notification
- Authentication
- Payment
- Deployment
Day 1
As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.
Day 2
Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.
Hackweek 24
For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.
Day 1
Fix RSpec tests in order to replace the ruby-ldap rubygem in OBS by enavarro_suse
Description
"LDAP mode is not official supported by OBS!". See: config/options.yml.example#L100-L102
However, there is an RSpec file which tests LDAP mode in OBS. These tests use the ruby-ldap
rubygem, mocking the results returned by a LDAP server.
The ruby-ldap
rubygem seems no longer maintaned, and also prevents from updating to a more recent Ruby version. A good alternative is to replace it with the net-ldap
rubygem.
Before replacing the ruby-ldap
rubygem, we should modify the tests so the don't mock the responses of a LDAP server. Instead, we should modify the tests and run them against a real LDAP server.
Goals
Goals of this project:
- Modify the RSpec tests and run them against a real LDAP server
- Replace the
net-ldap
rubygem with theruby-ldap
rubygem
Achieving the above mentioned goals will:
- Permit upgrading OBS from Ruby 3.1 to Ruby 3.2
- Make a step towards officially supporting LDAP in OBS.
Resources
SUSE Prague claw machine by anstalker
Project Description
The idea is to build a claw machine similar to e.g. this one:
Why? Well, it could be a lot of fun!
But also it's a great way to dispense SUSE and openSUSE merch like little Geekos at events like conferences, career fairs and open house events.
Goal for this Hackweek
Build an arcade claw machine.
Resources
In French, an article about why you always lose in claw machine games:
We're looking for handy/crafty people in the Prague office:
- woodworking XP or equipment
- arduino/raspi embedded programming knowledge
- Anthony can find a budget for going to GM and buying servos and such ;)
VulnHeap by r1chard-lyu
Description
The VulnHeap project is dedicated to the in-depth analysis and exploitation of vulnerabilities within heap memory management. It focuses on understanding the intricate workflow of heap allocation, chunk structures, and bin management, which are essential to identifying and mitigating security risks.
Goals
- Familiarize with heap
- Heap workflow
- Chunk and bin structure
- Vulnerabilities
- Vulnerability
- Use after free (UAF)
- Heap overflow
- Double free
- Use Docker to create a vulnerable environment and apply techniques to exploit it
Resources
- https://heap-exploitation.dhavalkapil.com/divingintoglibc_heap
- https://raw.githubusercontent.com/cloudburst/libheap/master/heap.png
- https://github.com/shellphish/how2heap?tab=readme-ov-file
toptop - a top clone written in Go by dshah
Description
toptop
is a clone of Linux's top
CLI tool, but written in Go.
Goals
Learn more about Go (mainly bubbletea) and Linux
Resources
Explore simple and distro indipendent declarative Linux starting on Tumbleweed or Arch Linux by janvhs
Description
Inspired by mkosi the idea is to experiment with a declarative approach of defining Linux systems. A lot of tools already make it possible to manage the systems infrastructure by using description files, rather than manual invocation. An example for this are systemd presets for managing enabled services or the /etc/fstab
file for describing how partitions should be mounted.
If we would take inspiration from openSUSE MicroOS and their handling of the /etc/
directory, we could theoretically use systemd-sysupdate
to swap out the /usr/
partition and create an A/B boot scheme, where the /usr/
partition is always freshly built according to a central system description. In the best case it would be possible to still utilise snapshots, but an A/B root scheme would be sufficient for the beginning. This way you could get the benefit of NixOS's declarative system definition, but still use the distros package repositories and don't have to deal with the overhead of Flakes or the Nix language.
Goals
- A simple and understandable system
- Check fitness of
mkosi
or write a simple extensible image builder tool for it - Create a declarative system specification
- Create a system with swappable
/usr/
partition - Create an A/B root scheme
- Swap to the new system without reboot (kexec?)
Resources
- Ideas that have been floating around in my head for a while
- https://0pointer.net/blog/fitting-everything-together.html
- GNOME OS
- MicroOS
- systemd mkosi
- Vanilla OS
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[W]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[W]
Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).[W]
Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.[I]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?[W]
Applying any basic salt state (including a formula)[W]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
The story so far
- Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
- Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
- Day 3: Working on trivial changes after I read this blog post:
https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence
with the patch preparation and submit process yet.
- First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
- Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
- Day 4: Triaging more issues found by Coverity.
- The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
- Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
- Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.
I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.
The patches
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
SUSE Prague claw machine by anstalker
Project Description
The idea is to build a claw machine similar to e.g. this one:
Why? Well, it could be a lot of fun!
But also it's a great way to dispense SUSE and openSUSE merch like little Geekos at events like conferences, career fairs and open house events.
Goal for this Hackweek
Build an arcade claw machine.
Resources
In French, an article about why you always lose in claw machine games:
We're looking for handy/crafty people in the Prague office:
- woodworking XP or equipment
- arduino/raspi embedded programming knowledge
- Anthony can find a budget for going to GM and buying servos and such ;)