Description

This project plans to create an MCP Trace Suite, a system that consolidates commonly used Linux debugging tools such as bpftrace, perf, and ftrace.

The suite is implemented as an MCP Server. This architecture allows an AI agent to leverage the server to diagnose Linux issues and perform targeted system debugging by remotely executing and retrieving tracing data from these powerful tools.

  • Repo: https://github.com/r1chard-lyu/systracesuite
  • Demo: Slides

Goals

  1. Build an MCP Server that can integrate various Linux debugging and tracing tools, including bpftrace, perf, ftrace, strace, and others, with support for future expansion of additional tools.

  2. Perform testing by intentionally creating bugs or issues that impact system performance, allowing an AI agent to analyze the root cause and identify the underlying problem.

Resources

  • Gemini CLI: https://geminicli.com/
  • eBPF: https://ebpf.io/
  • bpftrace: https://github.com/bpftrace/bpftrace/
  • perf: https://perfwiki.github.io/main/
  • ftrace: https://github.com/r1chard-lyu/tracium/

Looking for hackers with the skills:

ai mcp perf observability bpftrace ftrace top

This project is part of:

Hack Week 25

Activity

  • 17 days ago: r1chard-lyu added keyword "top" to this project.
  • 17 days ago: r1chard-lyu added keyword "ftrace" to this project.
  • 17 days ago: r1chard-lyu removed keyword ebpf from this project.
  • 17 days ago: r1chard-lyu added keyword "bpftrace" to this project.
  • 17 days ago: r1chard-lyu started this project.
  • 21 days ago: r1chard-lyu added keyword "ai" to this project.
  • 21 days ago: r1chard-lyu added keyword "mcp" to this project.
  • 21 days ago: r1chard-lyu added keyword "ebpf" to this project.
  • 21 days ago: r1chard-lyu added keyword "perf" to this project.
  • 21 days ago: r1chard-lyu added keyword "observability" to this project.
  • 21 days ago: r1chard-lyu originated this project.

  • Comments

    • r1chard-lyu
      17 days ago by r1chard-lyu | Reply

      Hack Week 25 - Status


      Day 1

      • Systracesuite Development:
        • Feature Development (Server & Tracing Integration):
          • Secured non-interactive sudo for bpftrace_list.
          • Integrated Bpftrace utilities (version and help commands).
          • Added .gemini settings for Gemini CLI MCP connection.
          • Added fastmcp to requirements.txt.
          • Implemented initial FastMCP server (with status, echo, stop, top, perf tools).
        • Documentation:
          • Refined JSON examples in README to a single-line format.
          • Updated README.md with FastMCP server installation, JSON-RPC 2.0, and usage instructions.
        • Initial Setup: Added README.md file.

      Day 2

      • Systracesuite Development:
        • Feature Development (Tracing Tools):
          • Added read_bpftrace_tool for Bpftrace tool information.
          • Integrated new Bpftrace tools (e.g., tcpconnect.bt, tcpdrop.bt, etc.).
          • Added bpftrace_help tool.
          • Added ftrace_help and ftrace_version tools.
          • Added strace_help and strace_version tools.
        • Refactoring & Setup:
          • Refactored interactive root handling, removing password prompts; now uses bpftrace_list_all (assumes passwordless sudo).
          • Implemented setup.sh for passwordless sudo on specific tools.
        • Documentation: README updated to reflect these changes.

      Day 3

      • Systracesuite Development:
        • Project Refactoring: Rename project to "Systracesuite"; update README, MCP server name, and arguments.
        • Maintenance: Remove local Gemini settings; add to .gitignore.
        • Documentation: Update the README; add LICENSE file.
      • Testing the execution result of Systracesuite.
      • Testing bpftrace tools from upstream and SUSE sources.

      Day 4

      • Systracesuite Development:
        • Documentation Updates: Clarify Bpftrace tool sources in README; include a system architecture diagram.
      • Testing different Systracesuite use cases, such as network latency and program crashes.
      • Prepare demo experiments and slides.

      Day 5

      • Demo. Slides
      • Collect Q&A and feedback.
      • Plan and outline optimization directions.

    Similar Projects

    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution


    GenAI-Powered Systemic Bug Evaluation and Management Assistant by rtsvetkov

    Motivation

    What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

    Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

    Description

    To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic/Systemic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
    3. Implement Bugzillla call to collect the
    4. Implement Questioning Framework as LLVM pre-conditioning
    5. Define set of instructions
    6. Assemble the Tool

    Resources

    What are Systemic Questions?

    Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
    In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

    Gitlab Project

    gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question


    Explore LLM evaluation metrics by thbertoldi

    Description

    Learn the best practices for evaluating LLM performance with an open-source framework such as DeepEval.

    Goals

    Curate the knowledge learned during practice and present it to colleagues.

    -> Maybe publish a blog post on SUSE's blog?

    Resources

    https://deepeval.com

    https://docs.pactflow.io/docs/bi-directional-contract-testing


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    "what is it" file and directory analysis via MCP and local LLM, for console and KDE by rsimai

    Description

    Users sometimes wonder what files or directories they find on their local PC are good for. If they can't determine from the filename or metadata, there should an easy way to quickly analyze the content and at least guess the meaning. An LLM could help with that, through the use of a filesystem MCP and to-text-converters for typical file types. Ideally this is integrated into the desktop environment but works as well from a console. All data is processed locally or "on premise", no artifacts remain or leave the system.

    Goals

    • The user can run a command from the console, to check on a file or directory
    • The filemanager contains the "analyze" feature within the context menu
    • The local LLM could serve for other use cases where privacy matters

    TBD

    • Find or write capable one-shot and interactive MCP client
    • Find or write simple+secure file access MCP server
    • Create local LLM service with appropriate footprint, containerized
    • Shell command with options
    • KDE integration (Dolphin)
    • Package
    • Document

    Resources


    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    Multi-agent AI assistant for Linux troubleshooting by doreilly

    Description

    Explore multi-agent architecture as a way to avoid MCP context rot.

    Having one agent with many tools bloats the context with low-level details about tool descriptions, parameter schemas etc which hurts LLM performance. Instead have many specialised agents, each with just the tools it needs for its role. A top level supervisor agent takes the user prompt and delegates to appropriate sub-agents.

    Goals

    Create an AI assistant with some sub-agents that are specialists at troubleshooting Linux subsystems, e.g. systemd, selinux, firewalld etc. The agents can get information from the system by implementing their own tools with simple function calls, or use tools from MCP servers, e.g. a systemd-agent can use tools from systemd-mcp.

    Example prompts/responses:

    user$ the system seems slow
    assistant$ process foo with pid 12345 is using 1000% cpu ...
    
    user$ I can't connect to the apache webserver
    assistant$ the firewall is blocking http ... you can open the port with firewall-cmd --add-port ...
    

    Resources

    Language Python. The Python ADK is more mature than Golang.

    https://google.github.io/adk-docs/

    https://github.com/djoreilly/linux-helper


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    dynticks-testing: analyse perf / trace-cmd output and aggregate data by m.crivellari

    Description

    dynticks-testing is a project started years ago by Frederic Weisbecker. One of the feature is to check the actual configuration (isolcpus, irqaffinity etc etc) and give feedback on it.

    An important goal of this tool is to parse the output of trace-cmd / perf and provide more readable data, showing the duration of every events grouped by PID (showing also the CPU number, if the tasks has been migrated etc).

    An example of data captured on my laptop (incomplete!!):

              -0     [005] dN.2. 20310.270699: sched_wakeup:         WaylandProxy:46380 [120] CPU:005
              -0     [005] d..2. 20310.270702: sched_switch:         swapper/5:0 [120] R ==> WaylandProxy:46380 [120]
    ...
        WaylandProxy-46380 [004] d..2. 20310.295397: sched_switch:         WaylandProxy:46380 [120] S ==> swapper/4:0 [120]
              -0     [006] d..2. 20310.295397: sched_switch:         swapper/6:0 [120] R ==> firefox:46373 [120]
             firefox-46373 [006] d..2. 20310.295408: sched_switch:         firefox:46373 [120] S ==> swapper/6:0 [120]
              -0     [004] dN.2. 20310.295466: sched_wakeup:         WaylandProxy:46380 [120] CPU:004
    

    Output of noise_parse.py:

    Task: WaylandProxy Pid: 46380 cpus: {4, 5} (Migrated!!!)
            Wakeup Latency                                Nr:        24     Duration:          89
            Sched switch: kworker/12:2                    Nr:         1     Duration:           6
    

    My first contribution is around Nov. 2024!

    Goals

    • add more features (eg cpuset)
    • test / bugfix

    Resources

    Progresses

    isolcpus and cpusets implemented and merged in master: dynticks-testing.git commit


    bpftrace contribution by mkoutny

    Description

    bpftrace is a great tool, no need to sing odes to it here. It can access any kernel data and process them in real time. It provides helpers for some common Linux kernel structures but not all.

    Goals

    • set up bpftrace toolchain
    • learn about bpftrace implementation and internals
    • implement support for percpu_counters
    • look into some of the first issues
    • send a refined PR (on Thu)

    Resources


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution