Description

FamilyTrip Planner is an innovative travel planning application designed to optimize travel experiences for families with children. By integrating APIs for flights, accommodations, and local activities, the app generates complete itineraries tailored to each family’s unique interests and needs. Recommendations are based on customizable parameters such as destination, trip duration, children’s ages, and personal preferences. FamilyTrip Planner not only simplifies the travel planning process but also offers a comprehensive, personalized experience for families.

Goals

This project aims to: - Create a user-friendly platform that assists families in planning complete trips, from flight and accommodation options to recommended family-friendly activities. - Provide intelligent, personalized travel itineraries using artificial intelligence to enhance travel enjoyment and minimize time and cost. - Serve as an educational project for exploring Go programming and artificial intelligence, with the goal of building proficiency in both.

Resources

To develop FamilyTrip Planner, the project will leverage: - APIs such as Skyscanner, Google Places, and TripAdvisor to source real-time information on flights, accommodations, and activities. - Go programming language to manage data integration, API connections, and backend development. - Basic machine learning libraries to implement AI-driven itinerary suggestions tailored to family needs and preferences.

Looking for hackers with the skills:

go machinelearning family trip planner

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: AxelL joined this project.
  • about 1 year ago: AxelL left this project.
  • about 1 year ago: AxelL joined this project.
  • about 1 year ago: PSuarezHernandez liked this project.
  • about 1 year ago: ale_grey_91 liked this project.
  • about 1 year ago: ale_grey_91 disliked this project.
  • about 1 year ago: ale_grey_91 liked this project.
  • about 1 year ago: FSzekely liked this project.
  • about 1 year ago: pherranz started this project.
  • about 1 year ago: pherranz added keyword "go" to this project.
  • about 1 year ago: pherranz added keyword "machinelearning" to this project.
  • about 1 year ago: pherranz added keyword "family" to this project.
  • about 1 year ago: pherranz added keyword "trip" to this project.
  • about 1 year ago: pherranz added keyword "planner" to this project.
  • about 1 year ago: pherranz originated this project.

  • Comments

    • pherranz
      about 1 year ago by pherranz | Reply

      The issue turned out to be more complex than I initially estimated.

      Nevertheless I learned a lot about Go and how to query APIs :)

    Similar Projects

    Help Create A Chat Control Resistant Turnkey Chatmail/Deltachat Relay Stack - Rootless Podman Compose, OpenSUSE BCI, Hardened, & SELinux by 3nd5h1771fy

    Description

    The Mission: Decentralized & Sovereign Messaging

    FYI: If you have never heard of "Chatmail", you can visit their site here, but simply put it can be thought of as the underlying protocol/platform decentralized messengers like DeltaChat use for their communications. Do not confuse it with the honeypot looking non-opensource paid for prodect with better seo that directs you to chatmailsecure(dot)com

    In an era of increasing centralized surveillance by unaccountable bad actors (aka BigTech), "Chat Control," and the erosion of digital privacy, the need for sovereign communication infrastructure is critical. Chatmail is a pioneering initiative that bridges the gap between classic email and modern instant messaging, offering metadata-minimized, end-to-end encrypted (E2EE) communication that is interoperable and open.

    However, unless you are a seasoned sysadmin, the current recommended deployment method of a Chatmail relay is rigid, fragile, difficult to properly secure, and effectively takes over the entire host the "relay" is deployed on.

    Why This Matters

    A simple, host agnostic, reproducible deployment lowers the entry cost for anyone wanting to run a privacy‑preserving, decentralized messaging relay. In an era of perpetually resurrected chat‑control legislation threats, EU digital‑sovereignty drives, and many dangers of using big‑tech messaging platforms (Apple iMessage, WhatsApp, FB Messenger, Instagram, SMS, Google Messages, etc...) for any type of communication, providing an easy‑to‑use alternative empowers:

    • Censorship resistance - No single entity controls the relay; operators can spin up new nodes quickly.
    • Surveillance mitigation - End‑to‑end OpenPGP encryption ensures relay operators never see plaintext.
    • Digital sovereignty - Communities can host their own infrastructure under local jurisdiction, aligning with national data‑policy goals.

    By turning the Chatmail relay into a plug‑and‑play container stack, we enable broader adoption, foster a resilient messaging fabric, and give developers, activists, and hobbyists a concrete tool to defend privacy online.

    Goals

    As I indicated earlier, this project aims to drastically simplify the deployment of Chatmail relay. By converting this architecture into a portable, containerized stack using Podman and OpenSUSE base container images, we can allow anyone to deploy their own censorship-resistant, privacy-preserving communications node in minutes.

    Our goal for Hack Week: package every component into containers built on openSUSE/MicroOS base images, initially orchestrated with a single container-compose.yml (podman-compose compatible). The stack will:

    • Run on any host that supports Podman (including optimizations and enhancements for SELinux‑enabled systems).
    • Allow network decoupling by refactoring configurations to move from file-system constrained Unix sockets to internal TCP networking, allowing containers achieve stricter isolation.
    • Utilize Enhanced Security with SELinux by using purpose built utilities such as udica we can quickly generate custom SELinux policies for the container stack, ensuring strict confinement superior to standard/typical Docker deployments.
    • Allow the use of bind or remote mounted volumes for shared data (/var/vmail, DKIM keys, TLS certs, etc.).
    • Replace the local DNS server requirement with a remote DNS‑provider API for DKIM/TXT record publishing.

    By delivering a turnkey, host agnostic, reproducible deployment, we lower the barrier for individuals and small communities to launch their own chatmail relays, fostering a decentralized, censorship‑resistant messaging ecosystem that can serve DeltaChat users and/or future services adopting this protocol

    Resources


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)


    Add support for todo.sr.ht to git-bug by mcepl

    Description

    I am a big fan of distributed issue tracking and the best (and possibly) only credible such issue tracker is now git-bug. It has bridges to another centralized issue trackers, so user can download (and modify) issues on GitHub, GitLab, Launchpad, Jira). I am also a fan of SourceHut, which has its own issue tracker, so I would like it bridge the two. Alas, I don’t know much about Go programming language (which the git-bug is written) and absolutely nothing about GraphQL (which todo.sr.ht uses for communication). AI to the rescue. I would like to vibe code (and eventually debug and make functional) bridge to the SourceHut issue tracker.

    Goals

    Functional fix for https://github.com/git-bug/git-bug/issues/1024

    Resources

    • anybody how actually understands how GraphQL and authentication on SourceHut (OAuth2) works


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    Create a go module to wrap happy-compta.fr by cbosdonnat

    Description

    https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.

    Goals

    Write a go client module to be used as an API to programmatically manipulate the tool.

    Writing an example tool to load data from a CSV file would be good too.


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References