Project Description

The Linux Test Project has a solid and strong code base which could be used to create a generic testing framework. The new testing framework might be used by users in order to test their own C code, taking advantage of the LTP features, from test macros to test declaration, plus many other features.

The idea is to see what's the complexity needed to get rid of the LTP specific code and to create a simple prototype with all needed features.

https://github.com/acerv/ltp-core

https://github.com/acerv/ltp-testcases

Monday 06-11-2023

Cleaned up the entire LTP folder, removing tests and unused files. Most of the work was focusing on compiling libltp.so library using Makefile. What I seen is that Makefile is a nice build system, but it requires too much effort in terms of scripting, when it comes to switch from autotools. The library was successfully build, but this method requires too much effort.

For this reason, I will try to take a look at other possibilities, such as cmake/meson.

Tuesday 07-11-2023

After a few try and discussions with the Kernel QA team, I decided to move into meson, which seems to be the best choice in terms of scripting difficulties and nice results. Let's start to hack!!

First of all, I ported the Makefile used to compile libltp.so into meson, including a meson.build file in the main root. For now it's kinda complex, but I will eventually split it into sub-projects in the next days.

A generic TODO list is the following:

  • build libltp.so/.a
  • generate config.h
  • generate syscalls.h
  • create installation

Wednesday 08-11-2023

Meson is the perfect choice to build ltp-core library and I already wrote the code to create config.h, which was actually the most difficult task of all, since all the rules defined in configure.ac to check for headers, functions, types and struct members have to be ported one-by-one from autotools to meson. I managed to do it and the result is pretty good, but it was a hard task.

Tuesday 09-11-2023

Habemus papam! I was able to generate syscalls.h file, recreating the regen.sh script using python language and calling it from meson build system. The meson subdir structure is not good to force syscalls.h and config.h creation, so I had to split meson.build definitions and populate them inside the sub-project directories. All works and we have the first result :)

The library installation is ready and it can be used via meson install command.

Also current LTP tests can be compiled easily:

``` meson configure -Ddefault_library=static meson install --destdir=ltp

gcc -Iltp/usr/local/include chdir04.c libltp.a -o chdir04

./chdir04

../lib/tsttest.c:1690: TINFO: LTP version: 20230929-157-g15652c5ae ../lib/tsttest.c:1576: TINFO: Timeout per run is 0h 00m 30s chdir04.c:29: TPASS: chdir() : ENAMETOOLONG (36) chdir04.c:29: TPASS: chdir() : ENOENT (2) chdir04.c:29: TPASS: chdir() : EFAULT (14)

Summary: passed 3 failed 0 broken 0 skipped 0 warnings 0 ```

Friday 10-11-2023

I was able to compile the entire cve testing suite using ltp-core library :-)

https://github.com/acerv/ltp-testcases

Looking for hackers with the skills:

ltp linux testing framework testingframework meson c

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: acervesato added keyword "c" to this project.
  • about 1 year ago: acervesato started this project.
  • about 1 year ago: acervesato added keyword "ltp" to this project.
  • about 1 year ago: acervesato added keyword "linux" to this project.
  • about 1 year ago: acervesato added keyword "testing" to this project.
  • about 1 year ago: acervesato added keyword "framework" to this project.
  • about 1 year ago: acervesato added keyword "testingframework" to this project.
  • about 1 year ago: acervesato added keyword "meson" to this project.
  • about 1 year ago: acervesato originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    toptop - a top clone written in Go by dshah

    Description

    toptop is a clone of Linux's top CLI tool, but written in Go.

    Goals

    Learn more about Go (mainly bubbletea) and Linux

    Resources

    GitHub


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [x] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [P] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Works from UI, need to test the rest.
    • [P] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already)
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    Explore simple and distro indipendent declarative Linux starting on Tumbleweed or Arch Linux by janvhs

    Description

    Inspired by mkosi the idea is to experiment with a declarative approach of defining Linux systems. A lot of tools already make it possible to manage the systems infrastructure by using description files, rather than manual invocation. An example for this are systemd presets for managing enabled services or the /etc/fstab file for describing how partitions should be mounted.

    If we would take inspiration from openSUSE MicroOS and their handling of the /etc/ directory, we could theoretically use systemd-sysupdate to swap out the /usr/ partition and create an A/B boot scheme, where the /usr/ partition is always freshly built according to a central system description. In the best case it would be possible to still utilise snapshots, but an A/B root scheme would be sufficient for the beginning. This way you could get the benefit of NixOS's declarative system definition, but still use the distros package repositories and don't have to deal with the overhead of Flakes or the Nix language.

    Goals

    • A simple and understandable system
    • Check fitness of mkosi or write a simple extensible image builder tool for it
    • Create a declarative system specification
    • Create a system with swappable /usr/ partition
    • Create an A/B root scheme
    • Swap to the new system without reboot (kexec?)

    Resources

    • Ideas that have been floating around in my head for a while
    • https://0pointer.net/blog/fitting-everything-together.html
    • GNOME OS
    • MicroOS
    • systemd mkosi
    • Vanilla OS


    Contributing to Linux Kernel security by pperego

    Description

    A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.

    I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.

    I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller

    Goals

    1. Fix at least 2 security bugs
    2. Create the fuzzing lab and having it running

    The story so far

    • Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
    • Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
    • Day 3: Working on trivial changes after I read this blog post: https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence with the patch preparation and submit process yet.
      • First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
      • Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
    • Day 4: Triaging more issues found by Coverity.
      • The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
      • Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
    • Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
    • Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.

      I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.

    The patches

    1


    VulnHeap by r1chard-lyu

    Description

    The VulnHeap project is dedicated to the in-depth analysis and exploitation of vulnerabilities within heap memory management. It focuses on understanding the intricate workflow of heap allocation, chunk structures, and bin management, which are essential to identifying and mitigating security risks.

    Goals

    • Familiarize with heap
      • Heap workflow
      • Chunk and bin structure
      • Vulnerabilities
    • Vulnerability
      • Use after free (UAF)
      • Heap overflow
      • Double free
    • Use Docker to create a vulnerable environment and apply techniques to exploit it

    Resources

    • https://heap-exploitation.dhavalkapil.com/divingintoglibc_heap
    • https://raw.githubusercontent.com/cloudburst/libheap/master/heap.png
    • https://github.com/shellphish/how2heap?tab=readme-ov-file


    Drag Race - comparative performance testing for pull requests by balanza

    Description

    «Sophia, a backend developer, submitted a pull request with optimizations for a critical database query. Once she pushed her code, an automated load test ran, comparing her query against the main branch. Moments later, she saw a new comment automatically added to her PR: the comparison results showed reduced execution time and improved efficiency. Smiling, Sophia messaged her team, “Performance gains confirmed!”»

    Goals

    • To have a convenient and ergonomic framework to describe test scenarios, including environment and seed;
    • to compare results from different tests
    • to have a GitHub action that executes such tests on a CI environment

    Resources

    The MVP will be built on top of Preevy and K6.


    Hack on isotest-ng - a rust port of isotovideo (os-autoinst aka testrunner of openQA) by szarate

    Description

    Some time ago, I managed to convince ByteOtter to hack something that resembles isotovideo but in Rust, not because I believe that Perl is dead, but more because there are certain limitations in the perl code (how it was written), and its always hard to add new functionalities when they are about implementing a new backend, or fixing bugs (Along with people complaining that Perl is dead, and that they don't like it)

    In reality, I wanted to see if this could be done, and ByteOtter proved that it could be, while doing an amazing job at hacking a vnc console, and helping me understand better what RuPerl needs to work.

    I plan to keep working on this for the next few years, and while I don't aim for feature completion or replacing isotovideo tih isotest-ng (name in progress), I do plan to be able to use it on a daily basis, using specialized tooling with interfaces, instead of reimplementing everything in the backend

    Todo

    • Add make targets for testability, e.g "spawn qemu and type"
    • Add image search matching algorithm
    • Add a Null test distribution provider
    • Add a Perl Test Distribution Provider
    • Fix unittests https://github.com/os-autoinst/isotest-ng/issues/5
    • Research OpenTofu how to add new hypervisors/baremetal to OpenTofu
    • Add an interface to openQA cli

    Goals

    • Implement at least one of the above, prepare proposals for GSoC
    • Boot a system via it's BMC

    Resources

    See https://github.com/os-autoinst/isotest-ng


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.


    Yearly Quality Engineering Ask me Anything - AMA for not-engineering by szarate

    Goal

    Get a closer look at how developers work on the Engineering team (R & D) of SUSE, and close the collaboration gap between GSI and Engineering

    Why?

    Santiago can go over different development workflows, and can do a deepdive into how Quality Engineering works (think of my QE Team, the advocates for your customers), The idea of this session is to help open the doors to opportunities for collaboration, and broaden our understanding of SUSE as a whole.

    Objectives

    • Give $audience a small window on how to get some questions answered either on the spot or within days of how some things at engineering are done
    • Give Santiago Zarate from Quality Engineering a look into how $audience sees the engineering departments, and find out possibilities of further collaboration

    How?

    By running an "Ask me Anything" session, which is a format of a kind of open Q & A session, where participants ask the host multiple questions.

    How to make it happen?

    I'm happy to help joining a call or we can do it async (online/in person is more fun). Ping me over email-slack and lets make the magic happen!. Doesn't need to be during hackweek, but we gotta kickstart the idea during hackweek ;)

    Rules

    The rules are simple, the more questions the more fun it will be; while this will be only a window into engineering, it can also be the place to help all of us get to a similar level of understanding of the processes that are behind our respective areas of the organization.

    Dynamics

    The host will be monitoring the questions on some pre-agreed page, and try to answer to the best of their knowledge, if a question is too difficult or the host doesn't have the answer, he will do his best to provide an answer at a later date.

    Atendees are encouraged to add questions beforehand; in the case there aren't any, we would be looking at how Quality Engineering tests new products or performs regression tests

    Agenda

    • Introduction of Santiago Zarate, Product Owner of Quality Engineering Core team
    • Introduction of the Group/Team/Persons interested
    • Ice breaker
    • AMA time! Add your questions $PAGE
    • Looking at QE Workflows: How is
      • A maintenance update being tested before being released to our customers
      • Products in development are tested before making it generally available
    • Engineering Opportunity Board


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [x] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [P] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Works from UI, need to test the rest.
    • [P] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already)
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    FizzBuzz OS by mssola

    Project Description

    FizzBuzz OS (or just fbos) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).

    This kernel provides just one system call, write, which allows any program to pass the string to be written into stdout.

    This project is free software and you can find it here.

    Goal for this Hackweek

    • Better understand the RISC-V SBI interface.
    • Better understand RISC-V in privileged mode.
    • Have fun.

    Resources

    Results

    The project was a resounding success add-emoji Lots of learning, and the initial target was met.


    FastFileCheck work by pstivanin

    Description

    FastFileCheck is a high-performance, multithreaded file integrity checker for Linux. Designed for speed and efficiency, it utilizes parallel processing and a lightweight database to quickly hash and verify large volumes of files, ensuring their integrity over time.

    https://github.com/paolostivanin/FastFileCheck

    Goals

    • Release v1.0.0

    Design overwiew:

    • Main thread (producer): traverses directories and feeds the queue (one thread is more than enough for most use cases)
    • Dedicated consumer thread: manages queue and distributes work to threadpool
    • Worker threads: compute hashes in parallel

    This separation of concerns is efficient because:

    • Directory traversal is I/O bound and works well in a single thread
    • Queue management is centralized, preventing race conditions
    • Hash computation is CPU-intensive and properly parallelized

    Results

    The software is fully functional, albeit still in alpha state. Some numbers against AIDE, using as similar as possible options, when adding and checking 1269 files (34GB):

    $ time sudo aide --init
    ...
    real    0m31.105s
    user    0m0.022s
    sys     0m0.018s
    
    $  time aide --check
    ...
    real    0m30.922s
    user    1m2.416s
    sys     0m7.978s
    
    
    $ time ./FastFileCheck add
    ...
    real    0m7.928s
    user    0m3.263s
    sys     0m5.553s
    
    $ time ./FastFileCheck check
    ...
    real    0m4.692s
    user    0m7.497s
    sys     0m7.323s
    


    ESETv2 Emulator / interpreter by m.crivellari

    Description

    ESETv2 is an intriguing challenge developed by ESET, available on their website under the "Challenge" menu. The challenge involves an "assembly-like" language and a Python compiler that generates .evm binary files.

    This is an example using one of their samples (it prints N Fibonacci numbers):

    .dataSize 0
    .code
    
    loadConst 0, r1 # first
    loadConst 1, r2 # second
    
    loadConst 1, r14 # loop helper
    
    consoleRead r3
    
    loop:
        jumpEqual end, r3, r15
    
        add r1, r2, r4
        mov r2, r1
        mov r4, r2
    
        consoleWrite r1
    
        sub r3, r14, r3
        jump loop
    end:
    hlt
    

    This language also supports multi-threading. It includes instructions such as createThread to start a new thread, joinThread to wait until a thread completes, and lock/unlock to facilitate synchronization between threads.

    Goals

    • create a full interpreter able to run all the available samples provided by ESET.
    • improve / optimize memory (eg. using bitfields where needed as well as avoid unnecessary memory allocations)

    Resources

    Achivements

    Project still not complete. Added lock / unlock instruction implementation but further debug is needed; there is a bug somewhere. Actually the code it works for almost all the examples in the samples folder. 1 of them is not yet runnable (due to a missing "write" opcode implementation), another will cause the bug to show up; still not investigated, anyhow.


    Add a machine-readable output to dmidecode by jdelvare

    Description

    There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.

    Goals

    Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.