Testing stylesheets can be a difficult task. Find a way to create a test suite for the DocBook stylesheets, for example.

Looking for hackers with the skills:

testing xslt

This project is part of:

Hack Week 11

Activity

  • about 10 years ago: e_bischoff liked this project.
  • about 10 years ago: thomas-schraitle added keyword "testing" to this project.
  • about 10 years ago: thomas-schraitle added keyword "xslt" to this project.
  • about 10 years ago: thomas-schraitle originated this project.

  • Comments

    • e_bischoff
      about 10 years ago by e_bischoff | Reply

      That's challenging.

      Would the test framework be limited to XML output? In that case, a first test would be that the result is well-formed and validates. Of course, that would not mean that it matches expectations.

      More generally, XSLT can produce about anything. What could be checked?

      • thomas-schraitle
        about 10 years ago by thomas-schraitle | Reply

        Thanks Eric for your comment! :)

        Well, actually there is already a test environment called XSpec. However, it works for XSLT 2 only, so it could be an issue for XSLT 1 stylesheets (especially when using extensions and the like).

        In my case, I'm searching for a solution for the DocBook stylesheets. They produce specific results and I'm only interested if some specific structure has been created. This can be easily checked through XPath.

        I tried XSpec, but documentation is a bit limited. Plus, it doesn't work as I expected to it. ;) So I guess, it will be some kind of Python3 + pytest magic. We'll see. :)

    Similar Projects

    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).
    • [W] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [I] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?
    • [W] Applying any basic salt state (including a formula)
    • [W] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    Hack on isotest-ng - a rust port of isotovideo (os-autoinst aka testrunner of openQA) by szarate

    Description

    Some time ago, I managed to convince ByteOtter to hack something that resembles isotovideo but in Rust, not because I believe that Perl is dead, but more because there are certain limitations in the perl code (how it was written), and its always hard to add new functionalities when they are about implementing a new backend, or fixing bugs (Along with people complaining that Perl is dead, and that they don't like it)

    In reality, I wanted to see if this could be done, and ByteOtter proved that it could be, while doing an amazing job at hacking a vnc console, and helping me understand better what RuPerl needs to work.

    I plan to keep working on this for the next few years, and while I don't aim for feature completion or replacing isotovideo tih isotest-ng (name in progress), I do plan to be able to use it on a daily basis, using specialized tooling with interfaces, instead of reimplementing everything in the backend

    Todo

    • Add make targets for testability, e.g "spawn qemu and type"
    • Add image search matching algorithm
    • Add a Null test distribution provider
    • Add a Perl Test Distribution Provider
    • Fix unittests https://github.com/os-autoinst/isotest-ng/issues/5
    • Research OpenTofu how to add new hypervisors/baremetal to OpenTofu
    • Add an interface to openQA cli

    Goals

    • Implement at least one of the above, prepare proposals for GSoC
    • Boot a system via it's BMC

    Resources

    See https://github.com/os-autoinst/isotest-ng


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.


    Drag Race - comparative performance testing for pull requests by balanza

    Description

    «Sophia, a backend developer, submitted a pull request with optimizations for a critical database query. Once she pushed her code, an automated load test ran, comparing her query against the main branch. Moments later, she saw a new comment automatically added to her PR: the comparison results showed reduced execution time and improved efficiency. Smiling, Sophia messaged her team, “Performance gains confirmed!”»

    Goals

    • To have a convenient and ergonomic framework to describe test scenarios, including environment and seed;
    • to compare results from different tests
    • to have a GitHub action that executes such tests on a CI environment

    Resources

    The MVP will be built on top of Preevy and K6.