Project Description
At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.
Goal for this Hackweek
- Build data ingestion
Data source:
- SUSE KB docs
- scc github docs
- scc trello knowledge board
Test out new RAG architecture
https://gitlab.suse.de/ngetahun/cootwbot
This project is part of:
Hack Week 23 Hack Week 24
Activity
Comments
Be the first to comment!
Similar Projects
Use AI tools to convert legacy perl scripts to bash by nadvornik
Description
Use AI tools to convert legacy perl scripts to bash
Goals
Uyuni project contains legacy perl scripts used for setup. The perl dependency could be removed, to reduce the container size. The goal of this project is to research use of AI tools for this task.
Resources
Results:
Aider is not the right tool for this. It works ok for small changes, but not for complete rewrite from one language to another.
I got better results with direct API use from script.
Use local/private LLM for semantic knowledge search by digitaltomm
Description
Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).
Goals
Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.
Resources
Repo: https://github.com/digitaltom/semantic-knowledge-search
Public instance: https://geeko.port0.org/
Results
Internal instance:
I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b
) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Save pytorch models in OCI registries by jguilhermevanz
Description
A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.
Goals
Allow PyTorch users to save and load machine learning models in OCI registries.
Resources
Gen-AI chatbots and test-automation of generated responses by mdati
Description
Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.
Try to define basic guidelines and requirements for quality test automation of AI-generated responses.
First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.
Goals
- Identify criteria and measuring scales for assessment of a text content.
- Define quality of an answer/text based on defined criteria .
- Identify some knowledge sectors and a proper list of problems/questions per sector.
- Manually run query session and apply evaluation criteria to answers.
- Draft requirements for test automation of AI answers.
Resources
- Announcement of SUSE-AI for Hack Week in Slack
- Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.
Notes
Foundation models (FMs):
are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.Large language models (LLMs):
are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.
Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
New migration tool for Leap by lkocman
Update
I will call a meeting with other interested people at 11:00 CET https://meet.opensuse.org/migrationtool
Description
SLES 16 plans to have no yast tool in it. Leap 16 might keep some bits, however, we need a new tool for Leap to SLES migration, as this was previously handled by a yast2-migration-sle
Goals
A tool able to migrate Leap 16 to SLES 16, I would like to cover also other scenarios within openSUSE, as in many cases users would have to edit repository files manually.
- Leap -> Leap n+1 (minor and major version updates)
- Leap -> SLES docs
- Leap -> Tumbleweed
- Leap -> Slowroll
- Leap Micro -> Leap Micro n+1 (minor and major version updates)
- Leap Micro -> MicroOS
Hackweek 24 update
Marcela and I were working on the project from Brno coworking as well as finalizing pieces after the hackweek. We've tested several migration scenarios and it works. But it needs further polishing and testing.
Projected was renamed to opensuse-migration-tool and was submitted to devel project https://build.opensuse.org/requests/1227281
Repository
https://github.com/openSUSE/opensuse-migration-tool
Out of scope is any migration to an immutable system. I know Richard already has some tool for that.
Resources
Tracker for yast stack reduction code-o-o/leap/features#173 YaST stack reduction