Some customers are still stuck in a world of 32bit. On ARM64, we have two options for those poor folks:

1) Run applications in the legacy ARMv7 instruction set 2) Compile applications with 32bit, but for the new AArch64 instruction set. This is called ILP32.

The main reason option 1 is a bad idea is that some hardware is already dropping ARMv7 instruction set support. And there will be more to come.

So if we ever want to enable people to run code that is not 64bit safe on AArch64 platforms, we need to provide them with a way out. Hence we should bootstrap at least the bare minimum to enable them to compile their own (broken) code.

Beware that all of this is in a big flux. The interfaces (ABI, syscalls) are not yet set in stone.

Looking for hackers with the skills:

arm ilp32 binutils kernel aarch64 obs openbuildservice

This project is part of:

Hack Week 12

Activity

  • almost 10 years ago: a_faerber left this project.
  • almost 10 years ago: a_faerber added keyword "obs" to this project.
  • almost 10 years ago: a_faerber added keyword "openbuildservice" to this project.
  • almost 10 years ago: a_faerber liked this project.
  • almost 10 years ago: a_faerber joined this project.
  • almost 10 years ago: algraf added keyword "arm" to this project.
  • almost 10 years ago: algraf added keyword "ilp32" to this project.
  • almost 10 years ago: algraf added keyword "binutils" to this project.
  • almost 10 years ago: algraf added keyword "kernel" to this project.
  • almost 10 years ago: algraf added keyword "aarch64" to this project.
  • almost 10 years ago: algraf started this project.
  • almost 10 years ago: algraf originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    Model checking the BPF verifier by shunghsiyu

    Project Description

    BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

    One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

    For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

    Goal for this Hackweek

    Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

    Resources


    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    Investigate non-booting Forlinx OKMX8MX-C board (aarch64) by a_faerber

    Description

    In the context of a SUSE customer inquiry last year, a Forlinx OKMX8MX-C arm64 board had been relayed to me from China that a customer was not successful booting SUSE Linux Micro on. Typically this happens when the vendor's bootloader (e.g., U-Boot) is not configured properly (e.g., U-Boot's distro boot) to be compliant with Arm SystemReady Devicetree (formerly IR) band. Unfortunately I could not immediately get it to emit any output, to even diagnose why it wasn't working. There was no public documentation on the vendor's website to even confirm I was checking the right UARTs.

    Earlier this year (2024) I happened to meet the ODM/OEM, Forlinx, at Embedded World 2024 in Nuremberg and again the Monday before Hackweek 24 at Electronica 2024 in Munich. The big puzzle was that the PCB print "OKMX8MX-C" does not match any current Forlinx product, there being OKMX8MM-C and OKMX8MP-C products with the Mini and Plus variants of NXP i.MX 8M family instead. One suggestion from Forlinx staff was to double-check the DIP switches on the board for boot mode selection.

    Goals

    Double-check the board name and investigate further what may be wrong with this board.

    Resources

    none

    Progress

    • The board name is indeed as spelled above, not matching any product on forlinx.net.
    • The DIP switches were set to boot from microSD.
    • Changing the DIP switches to eMMC boot did result in UART1 RS-232 output! (although at times garbled with the cable supplied and USB adapter used)
    • As feared, it did not automatically load our GRUB from USB.
    • Booting our GRUB manually from USB (via eMMC U-Boot commands fatload+bootefi) was unsuccessful, with partially Chinese error messages.
    • This confirmed the initial suspicion, already shared with Forlinx at Embedded World 2024, that the Forlinx System-on-Module's boot firmware was not Arm SystemReady Devicetree compliant and that a firmware update would be necessary to remedy that.
    • The microSD card turned out not to contain a bootable image but to only include Chinese-language board documentation (dated 20220507) and BSP files. They used a diverging name of OKMX8MQ-C.


    Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel

    Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.

    Result

    In the end I concentrated again to msm8994:


    Fix RSpec tests in order to replace the ruby-ldap rubygem in OBS by enavarro_suse

    Description

    "LDAP mode is not official supported by OBS!". See: config/options.yml.example#L100-L102

    However, there is an RSpec file which tests LDAP mode in OBS. These tests use the ruby-ldap rubygem, mocking the results returned by a LDAP server.

    The ruby-ldap rubygem seems no longer maintaned, and also prevents from updating to a more recent Ruby version. A good alternative is to replace it with the net-ldap rubygem.

    Before replacing the ruby-ldap rubygem, we should modify the tests so the don't mock the responses of a LDAP server. Instead, we should modify the tests and run them against a real LDAP server.

    Goals

    Goals of this project:

    • Modify the RSpec tests and run them against a real LDAP server
    • Replace the net-ldap rubygem with the ruby-ldap rubygem

    Achieving the above mentioned goals will:

    • Permit upgrading OBS from Ruby 3.1 to Ruby 3.2
    • Make a step towards officially supporting LDAP in OBS.

    Resources


    Explore the integration between OBS and GitHub by pdostal

    Project Description

    The goals:

    1) When GitHub pull request is created or modified the OBS project will be forked and the build results reported back to GitHub. 2) When new version of the GitHub project will be published the OBS will redownload the source and rebuild the project.

    Goal for this Hackweek

    Do as much as possible, blog about it and maybe use it another existing project.

    Resources


    Implement a full OBS api client in Rust by nbelouin

    Description

    I recently started to work on tooling for OBS using rust, to do so I started a Rust create to interact with OBS API, I only implemented a few routes/resources for what I needed. What about making it a full fledged OBS client library.

    Goals

    • Implement more routes/resources
    • Implement a test suite against the actual OBS implementation
    • Bonus: Create an osc like cli in Rust using the library

    Resources

    • https://github.com/suse-edge/obs-tools/tree/main/obs-client
    • https://api.opensuse.org/apidocs/


    Git CI to automate the creation of product definition by gyribeiro

    Description

    Automate the creation of product definition

    Goals

    Create a Git CI that will:

    • automatically be triggered once a change (commit) in package list is done.
    • run tool responsible to update product definition based on the changes in package list
    • test the updated product definition in OBS
    • submit a pull request updating the product definition in the repository

    NOTE: this Git CI may also be triggered manually

    Resources

    • https://docs.gitlab.com/ee/ci/
    • https://openbuildservice.org/2021/05/31/scm-integration/
    • https://github.com/openSUSE/openSUSE-release-tools


    Learn obs/ibs sync tool by xlai

    Description

    Once images/repo are built from IBS/OBS, there is a tool to sync the image from IBS/OBS to openqa asset directory and trigger openqa jobs accordingly.

    Goals

    Check how the tool is implemented, and be capable to add/modify our needed images/repo in future by ourselves.

    Resources

    • https://github.com/os-autoinst/openqa-trigger-from-obs
    • https://gitlab.suse.de/openqa/openqa-trigger-from-ibs-plugin/-/tree/master?ref_type=heads