Project Description

Hangar is a tool for mirroring/copying multi-arch container images between registry servers and local files, it also can generate an image list file according to Rancher KDM data and chart repositories for mirroring/saving images.

Repo:

Goal for this Hackweek

Refactor the major part of this project code to remove skopeo binary dependency.
Issue:

Resources

  • skopeo: https://github.com/containers/skopeo
  • containers/image: https://github.com/containers/image

Update

Currently, most of the functions described in this Issue have been implemented, and I have almost finished the code reconstruction. However, one week is very short, and I cannot create a new release tag for Hangar project yet. After HackWeek, I'll continue to maintain this project, fix potential bugs, and release the stable version.

Looking for hackers with the skills:

skopeo rancher containers

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: amunoz liked this project.
  • about 1 year ago: StarryWang liked this project.
  • about 1 year ago: StarryWang added keyword "skopeo" to this project.
  • about 1 year ago: StarryWang added keyword "rancher" to this project.
  • about 1 year ago: StarryWang added keyword "containers" to this project.
  • about 1 year ago: StarryWang started this project.
  • about 1 year ago: StarryWang originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Enabling Rancher as an OIDC Provider by rcabello

    Description

    Kubernetes supports OpenID Connect (OIDC) natively as an authentication mechanism, enabling token-based user authentication. This can be configured through flags in the Kubernetes API server or by using AuthenticationConfiguration.

    The purpose of this project is to enable Rancher to function as an OIDC provider, allowing Rancher's local cluster to act as an OIDC identity provider for downstream clusters. This setup will allow users to authenticate directly with downstream clusters without relying on Rancher’s proxy and impersonation mechanisms.

    Rancher will continue to support all authentication providers. When a user attempts to log in via the Rancher OIDC provider, they will be redirected to the authentication provider configured in Rancher.

    This approach also facilitates integration with third-party tools (e.g StackState)

    Goals

    • Implement Rancher as an OIDC provider using the ORY Fosite library, focusing only on the essential functionality required for basic integration.
    • Enable downstream clusters to authenticate using JWT tokens issued by Rancher.
    • Configure StackState to authenticate using Rancher as an OIDC provider.

    Resources

    https://github.com/ory/fosite


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goal for this Hackweek

    Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up


    Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz

    Description

    As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.

    Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.

    Goals

    • Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
    • Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
    • Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.

    Resources

    Core concepts:

    • ConfigMaps: Bottles could be defined and configured using ConfigMaps.
    • Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
    • Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Cluster API Provider for Harvester by rcase

    Project Description

    The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.

    The project has been bootstrapped in HackWeek 23, and its code is available here.

    Work done in HackWeek 2023

    • Have a early working version of the provider available on Rancher Sandbox : *DONE *
    • Demonstrated the created cluster can be imported using Rancher Turtles: DONE
    • Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo

    Goals for HackWeek 2024

    • Add support for ClusterClass
    • Add e2e testing
    • Add more Unit Tests
    • Improve Status Conditions to reflect current state of Infrastructure
    • Improve CI (some bugs for release creation)
    • Testing with newer Harvester version (v1.3.X and v1.4.X)
    • Due to the length and complexity of the templates, maybe package some of them as Helm Charts.
    • Other improvement suggestions are welcome!

    DONE in HackWeek 24:

    Thanks to @isim and Dominic Giebert for their contributions!

    Resources

    Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.

    This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games