Project Description

I have casually investigated that recent open source image generation AI systems are relatively invasive of the host system if one starts to install them that way. Usually container is better but needs special configuration to access the needed hardware. I'd like to run something in a container utilizing the RDNA2 Radeon gfx card I have on my desktop computer.

The exact container type would be evaluated, and of course existing solutions will be seeked.

Goal for this Hackweek

The goals for the Hackweek include to have suitable optimized container that can be created from scratch with one command and can generate SUSE related images with the AMD graphics with 8GB RAM (which is a bit limited apparently).

Resources

https://github.com/tjyrinki/sd-rocm

Results

See the github link above, images below and the blog post at https://timojyrinki.gitlab.io/hugo/post/2023-02-02-stablediffusion-docker/

Looking for hackers with the skills:

gpu containers ai amd radeon rdna2

This project is part of:

Hack Week 22

Activity

  • almost 2 years ago: punkioudi liked this project.
  • almost 2 years ago: tjyrinki_suse started this project.
  • almost 2 years ago: pdostal liked this project.
  • almost 2 years ago: ilausuch liked this project.
  • almost 2 years ago: dancermak liked this project.
  • almost 2 years ago: tschmitz liked this project.
  • almost 2 years ago: tjyrinki_suse added keyword "rdna2" to this project.
  • almost 2 years ago: tjyrinki_suse added keyword "gpu" to this project.
  • almost 2 years ago: tjyrinki_suse added keyword "containers" to this project.
  • almost 2 years ago: tjyrinki_suse added keyword "ai" to this project.
  • almost 2 years ago: tjyrinki_suse added keyword "amd" to this project.
  • almost 2 years ago: tjyrinki_suse added keyword "radeon" to this project.
  • almost 2 years ago: tjyrinki_suse originated this project.

  • Comments

    • tjyrinki_suse
      almost 2 years ago by tjyrinki_suse | Reply

      Blog post at https://timojyrinki.gitlab.io/hugo/post/2023-02-02-stablediffusion-docker/ – read more there!

      See the git repo for what has been done as part of this project.

      example image

    • tjyrinki_suse
      almost 2 years ago by tjyrinki_suse | Reply

      example image 2

    Similar Projects

    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    Port the classic browser game HackTheNet to PHP 8 by dgedon

    Description

    The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.

    Goals

    • Port the game to PHP 8 and MariaDB 11
    • Create a container where the game server can simply be started/stopped

    Resources

    • https://github.com/nodeg/hackthenet


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.


    Research how LLMs could help to Linux developers and/or users by anicka

    Description

    Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.

    Goals

    • Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
    • Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
    • Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
    • Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
    • Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.

    Resources

    • Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
    • Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
    • Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
    • Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
    • Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
    • Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
    • Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.


    Gen-AI chatbots and test-automation of generated responses by mdati

    Description

    Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.

    Try to define basic guidelines and requirements for quality test automation of AI-generated responses.

    First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.

    Goals

    • Identify criteria and measuring scales for assessment of a text content.
    • Define quality of an answer/text based on defined criteria .
    • Identify some knowledge sectors and a proper list of problems/questions per sector.
    • Manually run query session and apply evaluation criteria to answers.
    • Draft requirements for test automation of AI answers.

    Resources

    • Announcement of SUSE-AI for Hack Week in Slack
    • Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.

    Notes

    • Foundation models (FMs):
      are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.

    • Large language models (LLMs):
      are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
      LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.

    Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
    An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
    We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot