Project Description

Now that Uyuni proxy can be run as containers this project is about deploying it using Elemental and Fleet.

Goal for this Hackweek

Document how to set up the Uyuni proxy with Elemental and Fleet in the Uyuni documentation.

Looking for hackers with the skills:

fleet rancher elemental uyuni susemanager

This project is part of:

Hack Week 22

Activity

  • almost 3 years ago: j_renner liked this project.
  • almost 3 years ago: flonnegren liked this project.
  • almost 3 years ago: jeffpr joined this project.
  • almost 3 years ago: fgiudici liked this project.
  • almost 3 years ago: paulgonin liked this project.
  • almost 3 years ago: cbosdonnat added keyword "fleet" to this project.
  • almost 3 years ago: cbosdonnat added keyword "rancher" to this project.
  • almost 3 years ago: cbosdonnat added keyword "elemental" to this project.
  • almost 3 years ago: cbosdonnat added keyword "uyuni" to this project.
  • almost 3 years ago: cbosdonnat added keyword "susemanager" to this project.
  • almost 3 years ago: cbosdonnat started this project.
  • almost 3 years ago: cbosdonnat originated this project.

  • Comments

    • cbosdonnat
      almost 3 years ago by cbosdonnat | Reply

      Success! Documentation and demo files to set it up: https://github.com/cbosdo/elemental-uyuni-proxy

    Similar Projects

    go-git: unlocking SHA256-based repository cloning ahead of git v3 by pgomes

    Description

    The go-git library implements the git internals in pure Go, so that any Go application can handle not only Git repositories, but also lower-level primitives (e.g. packfiles, idxfiles, etc) without needing to shell out to the git binary.

    The focus for this Hackweek is to fast track key improvements for the project ahead of the upstream release of Git V3, which may take place at some point next year.

    Goals

    Stretch goals

    Resources

    • https://github.com/go-git/go-git/
    • https://go-git.github.io/docs/


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goals for Hackweek 25

    • Update to modern Rancher and verify that existing tests still work
    • Change testing logic to populate secrets instead of requiring a secondary script
    • Add new tests

    Goals for Hackweek 24 (Complete)

    • Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix
    • Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    • https://github.com/celidon/rancher-troublemaker
    • https://github.com/rancher/terraform-provider-rancher2
    • https://github.com/rancher/tf-rancher-up
    • https://github.com/rancher/quickstart


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    Liz - Prompt autocomplete by ftorchia

    Description

    Liz is the Rancher AI assistant for cluster operations.

    Goals

    We want to help users when sending new messages to Liz, by adding an autocomplete feature to complete their requests based on the context.

    Example:

    • User prompt: "Can you show me the list of p"
    • Autocomplete suggestion: "Can you show me the list of p...od in local cluster?"

    Example:

    • User prompt: "Show me the logs of #rancher-"
    • Chat console: It shows a drop-down widget, next to the # character, with the list of available pod names starting with "rancher-".

    Technical Overview

    1. The AI agent should expose a new ws/autocomplete endpoint to proxy autocomplete messages to the LLM.
    2. The UI extension should be able to display prompt suggestions and allow users to apply the autocomplete to the Prompt via keyboard shortcuts.

    Resources

    GitHub repository


    Rancher Cluster Lifecycle Visualizer by jferraz

    Description

    Rancher’s v2 provisioning system represents each downstream cluster with several Kubernetes custom resources across multiple API groups, such as clusters.provisioning.cattle.io and clusters.management.cattle.io. Understanding why a cluster is stuck in states like "Provisioning", "Updating", or "Unavailable" often requires jumping between these resources, reading conditions, and correlating them with agent connectivity and known failure modes. This project will build a Cluster Lifecycle Visualizer: a small, read-only controller that runs in the Rancher management cluster and generates a single, human-friendly view per cluster. It will watch Rancher cluster CRDs, derive a simplified lifecycle phase, keep a history of phase transitions from installation time onward, and attach a short, actionable recommendation string that hints at what the operator should check or do next.

    Goals

    • Provide a compact lifecycle summary for each Rancher-managed cluster (e.g. Provisioning, WaitingForClusterAgent, Active, Updating, Error) derived from provisioning.cattle.io/v1 Cluster and management.cattle.io/v3 Cluster status and conditions.
    • Maintain a phase history for each cluster, allowing operators to see how its state evolved over time since the visualizer was installed.
    • Attach a recommended action to the current phase using a small ruleset based on common Rancher failure modes (for example, cluster agent not connected, cluster still stabilizing after an upgrade, or generic error states), to improve the day-to-day debugging experience.
    • Deliver an easy-to-install, read-only component (single YAML or small Helm chart) that Rancher users can deploy to their management cluster and inspect via kubectl get/describe, without UI changes or direct access to downstream clusters.
    • Use idiomatic Go, wrangler, and Rancher APIs.

    Resources

    • Rancher Manager documentation on RKE2 and K3s cluster configuration and provisioning flows.
    • Rancher API Go types for provisioning.cattle.io/v1 and management.cattle.io/v3 (from the rancher/rancher repository or published Go packages).
    • Existing Rancher architecture docs and internal notes about cluster provisioning, cluster agents, and node agents.
    • A local Rancher management cluster (k3s or RKE2) with a few test downstream clusters to validate phase detection, history tracking, and recommendations.


    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    What if infrastructure scaled itself instead of making you scale it?

    Can we use existing Rancher capabilities like CAPI, autoscaling, and GitOps to make this simpler instead of building everything from scratch?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback


    Ansible to Salt integration by vizhestkov

    Description

    We already have initial integration of Ansible in Salt with the possibility to run playbooks from the salt-master on the salt-minion used as an Ansible Control node.

    In this project I want to check if it possible to make Ansible working on the transport of Salt. Basically run playbooks with Ansible through existing established Salt (ZeroMQ) transport and not using ssh at all.

    It could be a good solution for the end users to reuse Ansible playbooks or run Ansible modules they got used to with no effort of complex configuration with existing Salt (or Uyuni/SUSE Multi Linux Manager) infrastructure.

    Goals

    • [v] Prepare the testing environment with Salt and Ansible installed
    • [v] Discover Ansible codebase to figure out possible ways of integration
    • [v] Create Salt/Uyuni inventory module
    • [v] Make basic modules to work with no using separate ssh connection, but reusing existing Salt connection
    • [v] Test some most basic playbooks

    Resources

    GitHub page

    Video of the demo


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.

    Nah, let's be honest add-emoji AI helped a lot to vibe code a good part of the Ruby methods of the Test framework, moving them to Typescript, along with the migration from Capybara to Playwright. I've been using "Cline" as plugin for WebStorm IDE, using Gemini API behind it.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakiness.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources


    Enhance setup wizard for Uyuni by PSuarezHernandez

    Description

    This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.

    Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:

    • user creation
    • adding products / channels
    • generating bootstrap repos
    • create activation keys
    • ...

    Goals

    • Provide initial setup wizard as part of mgradm uyuni installation

    Resources


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Set Uyuni to manage edge clusters at scale by RDiasMateus

    Description

    Prepare a Poc on how to use MLM to manage edge clusters. Those cluster are normally equal across each location, and we have a large number of them.

    The goal is to produce a set of sets/best practices/scripts to help users manage this kind of setup.

    Goals

    step 1: Manual set-up

    Goal: Have a running application in k3s and be able to update it using System Update Controler (SUC)

    • Deploy Micro 6.2 machine
    • Deploy k3s - single node

      • https://docs.k3s.io/quick-start
    • Build/find a simple web application (static page)

      • Build/find a helmchart to deploy the application
    • Deploy the application on the k3s cluster

    • Install App updates through helm update

    • Install OS updates using MLM

    step 2: Automate day 1

    Goal: Trigger the application deployment and update from MLM

    • Salt states For application (with static data)
      • Deploy the application helmchart, if not present
      • install app updates through helmchart parameters
    • Link it to GIT
      • Define how to link the state to the machines (based in some pillar data? Using configuration channels by importing the state? Naming convention?)
      • Use git update to trigger helmchart app update
    • Recurrent state applying configuration channel?

    step 3: Multi-node cluster

    Goal: Use SUC to update a multi-node cluster.

    • Create a multi-node cluster
    • Deploy application
      • call the helm update/install only on control plane?
    • Install App updates through helm update
    • Prepare a SUC for OS update (k3s also? How?)
      • https://github.com/rancher/system-upgrade-controller
      • https://documentation.suse.com/cloudnative/k3s/latest/en/upgrades/automated.html
      • Update/deploy the SUC?
      • Update/deploy the SUC CRD with the update procedure


    Enhance setup wizard for Uyuni by PSuarezHernandez

    Description

    This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.

    Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:

    • user creation
    • adding products / channels
    • generating bootstrap repos
    • create activation keys
    • ...

    Goals

    • Provide initial setup wizard as part of mgradm uyuni installation

    Resources