I once had a bad dream.

I started good, a sunny day. I had just fixed an issue and push it to my fork, in order to create a Pull Request. I was happy. It felt awesome to have found a fix so elegant. Two lines of code.

But then, something happened. A cloud appear in the sky and partially hide the sun. github triggered the end to end test suite. You could see the waiting icon, you could almost hear the engines starting, ... a lightning and a thunder appeared in the sky, the sky turned dark and the e2e test started in our private jenkins server.

1 hour passed by... 2 hours .... the e2e tests still running ... 4 hours, not even 50%. Finally, I had to go, get some dinner, get some rest, so I decided to look at it the next day.

Sleep was not good. Dreaming the tests would fail and the deadline be missed .... I couldn't sleep no more so I wake up early in the morning, before sunrise. The computer still opened was lightning up the room. Out, the storm turned out to be a heavy rain. And the tests did not passed! 4 hours and half after starting them, so half an hour after leaving for dinner, and there was a fail test.

Finding out what went wrong took 2 hours...it was not even related to the code, but an infrastructure issue. A timeout when connecting to a mirror which was being restarted when the tests run. Apparently we hit a maintenance window.

Damn! So let's just "restart" the tests. This time, I decided to put an alarm 4 hours after and switch to another task, just to avoid the anxiety of the previous evening looking at the results. 4 hours passed by, and the tests are good. It is not raining anymore, a git of sun is filtering throw the window, hope is in the air. 4 more hours, and the tests still have not failed. Going to dinner and bed again and putting the alarm early in the morning. First thing in the morning I looked at the tests ... running again, feels good. All tests have passed and there is only one final "cleanup" state. Shower, breakfeast, sun is shining again!

Finally, all is green, so let's go and push the merge button ... oh oh ... clouds hide the sun again ... where is the merge button?? no way, there is a conflict with the code in master and I can't merge!!! I can't merge!!! shocked, I looked into the history ... John merged a PR overnight that was touching the same file ... hopeless I start crying on my desk...

Scared?

This is not so different on what could happen if we were running the whole e2e test suite in the SUSE Manager (uyuni) Pull Requests. However, not running any e2e tests has also a bad consequence. We find the issues after code has been merged in master, and then we spend days looking at what could have caused this, reverting commits, and starting again.

However, if we could run a subset of the e2e tests, we could shorten the time it takes and so run them at the PR level, so no broken code could get merged.

The thing is , how do we select which tests to run?

This project is about using Machine Learning to do predictive test selection, thus selecting which tests to run based on the history of previous test runs.

Inspired by: https://engineering.fb.com/2018/11/21/developer-tools/predictive-test-selection/

Looking for hackers with the skills:

ml ci qa ai

This project is part of:

Hack Week 20

Activity

  • almost 5 years ago: PSuarezHernandez liked this project.
  • almost 5 years ago: llansky3 liked this project.
  • almost 5 years ago: ories liked this project.
  • almost 5 years ago: j_renner liked this project.
  • almost 5 years ago: RDiasMateus liked this project.
  • almost 5 years ago: pagarcia liked this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ci" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "qa" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ai" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ml" to this project.
  • almost 5 years ago: jordimassaguerpla originated this project.

  • Comments

    • llansky3
      almost 5 years ago by llansky3 | Reply

      This could have some wider potential - clever picking of tests to shorten the time yet maximize the findings (and learning that in time based on test execution history to predict). I can see how that saves tons of money in cases where test on a real industrial machines need to be executed (e.g. cost of running engine on a test bed is 5-10k$ per day so there is huge difference if you need to run for 1 or 3 days)

    Similar Projects

    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.

    Timeline

    Day 1 (of 4)

    • Tried out a RAG demo, expanded on feeding it my own data
    • Experimented with qwen3-coder to add a persistent chat functionality, and keeping vectors in a pickle file
    • Optimizations to keep everything within context window
    • Learn and add a bit of PyTest

    Day 2

    • More experimenting and more data
    • Study ChromaDB
    • Add a Web UI that works from another computer even though the container sees network is down

    Day 3

    • The above RAG is working well enough for demonstration purposes.
    • Pivot to trying out OpenCode, configuring local Ollama qwen3-coder there, to analyze the RAG demo.
    • Figured out how to configure Ollama template to be usable under OpenCode. OpenCode locally is super slow to just running qwen3-coder alone.

    Day 4 (final day)

    • Battle with OpenCode that was both slow and kept on piling up broken things.
    • Call it success as after all the agentic AI was working locally.
    • Clean up the mess left behind a bit.

    Blog Post

    Summarized the findings at blog post.


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References